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Abstract

Spontaneous formation of patterns by reaction–diffusion systems has been a long-
standing object of research. We consider an approach to utilize these systems
in the processing of textured images. To this end we investigate the estimation
of parameters of a pattern–generating reaction–diffusion system of Gray–Scott
type from a single pattern representing the steady state distribution of one reactant.
Thereby we are able to describe a texture, albeit from a limited class so far, by
a set of numerical parameters. Unlike existing quantitative texture descriptors,
these parameters allow reconstruction of a visually similar texture. We demonstrate
our approach on synthetic and real-world textures. We consider this as a first
step towards a novel class of generative texture descriptors capable of closing the
loop between texture analysis and synthesis. We are convinced that with further
generalizations such generative texture descriptors will become a new powerful
tool for the processing of textured images.

1 Introduction

Texture analysis, such as discrimination or classification of textures [18], or segmentation of images
into regions of homogeneous texture [37], is typically addressed by quantitative texture descriptors
for which numerous variants have been proposed in literature over the last half century, see [4, 17, 19]
for comparisons. For example, Haralick features [14, 15] use statistics of cooccurence matrices of
pixel intensities. Further proposals are based on statistics of Fourier [26], Gabor [31] or wavelet
coefficients [8, 25]. More recently, CNN-based descriptors have been introduced [4, 5, 13, 24]. By
and large, the theoretical foundation of these approaches is mostly heuristic, and more notably, none
of them allows to reconstruct the actual texture from the quantitative descriptors. Therefore, texture
synthesis is done by entirely different approaches, with patch-based synthesis [9] being a prominent
example. As a consequence, texture analysis and synthesis are difficult to combine, e.g. in order to
design compression algorithms for textured images.

Devising a set of generative texture descriptors, i.e. descriptors that would allow to reconstruct the
actual texture, would close the loop between texture analysis and synthesis, and therefore open
avenues to novel methods in texture compression and more general texture processing. The present
work is intended as a first step towards this goal. Our approach arises from the confluence of the long-
researched topic of pattern formation by reaction–diffusion systems with more recent developments
in parameter identification. Let us sketch these two fields shortly.
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Reaction–diffusion patterns The mechanism of pattern formation by reactions between (at least)
two reactants (morphogens) combined with spatial diffusion of both substances was discovered by
Alan Turing [38]. Later on, Turing patterns were identified in a wide range of chemical, physical and
biological systems [2, 23], and modeled by reaction–diffusion PDEs such as the Gierer–Meinhardt
[11], the Gray–Scott [12], or the Schnakenberg model [33], The root of pattern formation in these
systems is the diffusion-driven instability (type I Turing instability) which means that a stable
dynamical system modeling the reaction dynamics (interactions of morphogens) in a single location
is driven to instability by the influence of diffusion of the reactants. Applications to the processing of
textured images were envisioned in the 1990s [29, 30, 39, 40] but due to the difficulties in identifying
parameters for given patterns further work was done mainly in computer graphics whereas in image
analysis interest in the topic somewhat petered out.

Parameter identification Estimation of unknown parameters of a reaction–diffusion system has
been considered in literature [6, 10, 16, 20, 21, 22, 35] for different scenarios. In [16], time series
data are used as an input. In [20], a reaction term is estimated from initial and boundary data and a
system state. In [22] a neural network is trained to estimate parameters for a pattern. Most interesting
for us are [10, 35] because they follow a model-based approach and use a system state as input. To
best of our knowledge, no attempt has been made so far to place the problem in the context of texture
analysis. Regarding description of textures by parameter sets we mention [27] which uses neural
networks trained to texture samples, thus describing textures by several thousand parameters instead
of the few of a reaction–diffusion system as we intend.

Our contribution As a first step towards using parameters of reaction–diffusion systems to describe
textures, we devise a workflow to estimate reaction parameters for one particular type of reaction–
diffusion system (Gray–Scott) from patterns. By experiments we demonstrate the viability of the
approach, albeit for the time being restricted to a limited class of textures.

Structure of the paper After recalling basics of pattern formation by reaction–diffusion systems
in Section 2, the framework for parameter identification is developed in Section 3. Experiments
to demonstrate the viability of our approach on synthetic and real-world examples are shown in
Section 4. A short summary and outlook in Section 5 concludes the paper.

2 Pattern formation by reaction–diffusion systems

From the several reaction–diffusion models capable of generating patterns we pick the Gray-Scott
model [12] for our study. It is given by an initial-value problem with suitable boundary conditions
(e.g. homogeneous Neumann) for the system of coupled PDEs

du1

dt
= D1∇2u1 −Ru1u

2
2 + F (1− u1) ,

du2

dt
= D2∇2u2 +Ru1u

2
2 − (F +K)u2 (1)

on Ω × [0, T ] where Ω is some planar domain, [0, T ] a time interval, and the functions u1, u2 :
Ω × [0, T ] → R+ model concentrations of two reactants A, B that diffuse at rates D1, D2 within
Ω and react with one another via A + 2B → 3B with a reaction rate R > 0, leading to the net
terms ∓Ru1u

2
2 according to the mass–action law. The parameter F > 0, called feed rate, describes a

continual renewal of the reactants by replacing a certain part of the mixture per time unit with fresh
substance A, and the kill rate K > 0 corresponds to a process that continually removes some fraction
of substance B. As usual the first morphogen is considered as the visible part of the system state.
Figure 1 shows exemplary patterns generated by this system with different parameters.

Turing instability A reaction–diffusion system can be written as du/dt = D∇2u+ f(u) where
u is the vector of morphogen concentration functions, D denotes the diagonal matrix of diffusivities
for the morphogens, and f comprises the reaction terms, including the feed and kill terms in the case
of the example system (1). Without diffusion, D = 0, a spatially constant system state u∗ is stable if
it is a fixed point, (du/dt)(u∗) = 0, and all eigenvalues of the Jacobian Duf at u∗ have negative
real parts. With nonzero diffusion, assuming the steady state is perturbed by a harmonic spatial wave
with wave number q, the Jacobian is perturbed by −q2D since a harmonic wave is an eigenfunction
of ∇2 with eigenvalue −q2. Depending on q, the real parts of some eigenvalues of Duf − q2D may
become positive, thus creating instability. If a given system is stable without diffusion but instable
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Figure 1: Four patterns (100× 100 pixels each) generated by a Gray–Scott reaction–diffusion system.
The concentration of the first morphogen is shown. (a) D1 = 960, D2 = 360, F = 180, K = 360,
R = 6000. (b) D1 = 960, D2 = 360, F = 180, K = 350, R = 6000. (c) D1 = 960, D2 = 360,
F = 225, K = 400, R = 6000. (d) D1 = 1000, D2 = 200, F = 225, K = 400, R = 6000.

for some range of wave numbers, with a maximum real part of eigenvalues being attained at some
finite wave number q, the system displays a type I Turing instability. If instead the supremum of real
parts of eigenvalues is reached for q → ∞, one speaks of a type II Turing instability. As analyzed in
literature [30, 35], type I Turing instability is the decisive mechanism behind pattern formation in a
wide range of reaction–diffusion systems.

3 Parameter estimation

In order to use reaction–diffusion systems to describe textures, we pursue the goal to identify a model
from an input image showing a homogeneous piece of texture. The model should be capable of
producing a Turing pattern which is visually similar to the given texture. As suggested in literature
[6, 10, 21] the input image is considered as a steady state of the reaction–diffusion system.

As mentioned in the previous section, reaction–diffusion systems generate Turing patterns due to the
interaction of two (or more) morphogens. However, the input image represents only the concentrations
of a single morphogen in the steady state. It is therefore necessary to estimate in a first step the
complete steady state of the system, i.e. to complement the given image by the concentration map of
the second morphogen. Once this has been accomplished, the second step involves the determination
of the parameters of the reaction–diffusion system from the full steady state. The following two
subsections discuss these two steps for the Gray–Scott system (1).

3.1 Estimation of the steady state

In order to estimate the missing second morphogen from the given input image, it needs to be noted
that the system state at a single time t does not contain information on the dynamics of the underlying
reaction–diffusion system. The question is whether the model (1) can be solved for u2 or whether a
suitable cost function can be derived from it that respects the system dynamics.

The assumption that the given image represents the morphogen u1 in the steady state leads to the
equilibrium condition

du1

dt
=

du2

dt
= 0 . (2)

Enforcing the steady-state constraint, the Gray–Scott system simplifies to

D1∇2u1 −Ru1u
2
2 + F (1− u1) = 0 , D2∇2u2 +Ru1u

2
2 − (F +K)u2 = 0 . (3)

We assume for now that the parameters of the Gray–Scott system are known.

Polynomial fitting Numerical experiments with the Gray–Scott system with different parameters
lead to the observation that there is a strong negative correlation between the concentrations of
the morphogen u1 and u2 across the spatial domain, compare Figure 2(a) (ground truth for one
example run of (1)). This is also in accordance with the understanding of the dynamical system as an
activation–inhibition mechanism that suggests a complementary distribution of the two morphogens.

This inspires to use a linear model u2 = f(u1, c) = c1u + c0 with coefficients c = (c0, c1) still
to be specified. Unfortunately, since only u1 is known, linear regression cannot be used to fit the
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Figure 2: (a) Phase diagram of the reference system compared to a linear model and a third-order
polynomial model. Negative values are clipped. (b, c) Parameter maps obtained by running (1) with
spatially varying parameters. In (b) the diffusion rates were fixed, feed rate increasing from 0 (left) to
800 (right), kill rate from 0 (bottom) to 800 (top), reaction rate R = 104. In (c) F , K, R were fixed,
and D1 varied from 0 (left) to 1500 (right), D2 from 0 (bottom) to 800 (top).

coefficients. Based on (2), we introduce the cost function

JI(c) =
∑
p

((
du1(p)

dt

)2

+

(
du2(p)

dt

)2
)

(4)

where p runs over pixels, u2 is computed pixel-wise from u1 via the linear model with c0, c1, and
the derivatives dui/dt are given by (1). The cost function can be interpreted as a distance to the
equilibrium of (1). Starting from some initialization, c0, c1 can now be refined iteratively using a
gradient descent for JI, leading to a minimizer clin = (c0, c1) for JI.

As shown in Figure 2(a), the correlation between the morphogens is well captured by the fitted linear
model. For a better fit, the linear model can be replaced by a cubic polynomial u2 = P (u1, c) =
c3u

3
1 + c2u

2
1 + c1u1 + c0. As before, a minimizer ccub = (c0, c1, c2, c3) can be estimated by

gradient descent for JI(c), and yields an even better approximation of the correspondence between
the morphogens, see again Figure 2(a). Note that unnatural negative concentrations of u2 for high u1

can occur, especially with the linear model, which need to be clipped for proper functioning of (1).

Direct optimization As an alternative to the polynomial fitting approach,it is also possible to
estimate u2 directly by gradient descent for JI. To this end, (1) is substituted for duk/dt in JI,
and the Laplacians ∇uk;i,j at pixels p = (i, j) are expressed by a standard central-difference
discretization ∇uk;i,j = uk;i+1,j + uk;i−1,j + uk;i,j+1 + uk;i,j−1 − 4uk;i,j to yield JI as a function
of the u2;i,j . The derivatives dJI/du2;i,j can then be computed either by numerical differentiation
or by automatic differentiation in reverse mode [3]. In experiments, this approach yields a slightly
more accurate reconstruction of u2 than the polynomial fitting approach but at a substantially higher
computational expense (more than three orders of magnitude). For the rest of this paper, we settle
therefore for the cubic polynomial fitting approach.

3.2 Estimation of the parameters of the PDE system

We turn now to discuss how, given a full steady state of a Gray–Scott system, the parameters can
be estimated. Numerical experiments have shown that the reaction parameters are relevant for the
type of texture generated by the system, whereas the diffusion rates essentially determine the scaling,
compare Figure 1. One can therefore choose between a computationally cheaper estimation of
the reaction parameters only, with fixed diffusivities, or full estimation of reaction and diffusion
parameters. The proceeding is analogous in both cases.

Pattern formation capability Turing instability occurs only in certain regions of the parameter
space, Figure 2(b, c). For a given system state consisting of morphogen concentration maps on Ω, we
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say that the system with given parameters has pattern formation capability if at least one point in Ω
satisfies the criterion of a type I Turing instability.

We use this criterion to constrain the feasible region in the parameter space. For its evaluation, we
employ an adapted version of an algorithm from [35] that samples a range of wave numbers with
logarithmic spacing and analyses for each pixel in Ω the eigenvalues of the system for all sample
wave numbers. A pixel is classified as type I Turing instability if the real part of the largest real part
of an eigenvalue is positive for some wave number and descends again towards the highest wave
number. Note that the pattern formation capability is a necessary but not a sufficient criterion.

Simplifying an approach from [10], we test whether the given system state is a steady state for the
reaction–diffusion system with given parameters by simulating the system for one time step, and
evaluating the resulting updates to the morphogen concentrations. From these updates, a cost function
is constructed which is then minimized.

We consider four choices of the cost function. The simplest choice is JI from (4) in the previous
subsection. Its gradient w.r.t. the system parameters can be evaluated by automatic differentiation
and used for a gradient descent step for these parameters. An alternative that captures more of the
non-linear behavior of the system evolution is

JII =
∑
p

(ũ(p)− u(p))
2 (5)

where u and ũ denote the given state and the state after a prescribed short evolution time (amounting
to several simulated time steps), resp., and summation again runs over all pixels p in Ω. The gradient
of JII is computed numerically by simulating the system for the current and nearby parameters.

Whereas the cost function JII measures the discrepancy between u and ũ directly in terms of
morphogen concentrations, the comparison can be focused stronger on properties of textures by
measuring discrepancies of suitable texture features. We consider two choices of texture features:
HGM (histogram of gradient magnitudes) descriptors [36] and ORB (Oriented FAST and Rotated
BRIEF) features [32]. HGM analyzes the distribution of gradients within an image, binning them
according to their magnitude. We normalize the gradient magnitudes to [0, 1] to compensate for
contrast and fix the number of bins to 20. The L1 norm of the difference of the resulting normalized
HGM of u and ũ yields the cost function JIII. ORB identifies corner-like key points in images
and equips them with a descriptor based on an orientation-normalized neighborhood patch. The
descriptor is a binary string encoding intensity comparisons within the patch. Thus, the discrepancy
of ORB between u and ũ is measured by the Hamming distance of the descriptors of a fixed number
(here, 10) of best-matched features in both images (from a total of 1000 key points computed per
image). The resulting cost function is JIV. Since both JIII and JIV take discrete values due to their
construction from histograms and Hamming distances, resp., they require gradient-free optimization;
we use the Nelder–Mead algorithm [28] for this purpose.

3.3 Alternating estimation of the steady state and PDE parameters

The proposed method of finding model parameters from an image only is illustrated in Figure 3. For
simplicity, we assume here that only reaction parameters are estimated. An image and a reaction–
diffusion model with known diffusivities are thus required as inputs. Further, a start value must be
provided for the reaction parameters θ0. An upper and lower bound is provided for each parameter θk
in θ. Within the so specified parameter range, suitable initializations for the reaction parameters are
identified based the pattern capability criterion from Section 3.2. To this end, random samples θ are
drawn uniformly distributed on the parameter range. For each sample θ the full concentration state of
the reaction–diffusion system is estimated by polynomial fitting as described in Section 3.1, and the
pattern formation capability is evaluated on the estimated system state. The process is repeated until
a desired number of valid initial parameter sets are found. The parameter set θ0 with the lowest cost
is then used as the initial value for parameter optimization.

Parameter optimization proceeds by alternating between updating the parameter set θi and the system
state estimate. The parameter update is performed by non-linear optimization using one of the
cost functions functions JI to JIV using Nelder–Mead optimization consistently. The result of the
optimization are new reaction parameters θi+1 with a lower cost. The alternating update process
of parameters and system state stops if the cost function converges to a (local) minimum yielding
optimal parameters θopt, or after a maximum number of iterations.
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Figure 3: Workflow to estimate reaction parameters of a reaction–diffusion model from pattern data.

3.4 Texture reconstruction

After successful estimation of the parameters of the reaction–diffusion system, one is interested
in reconstructing a pattern from these parameters. To this end, however, the system state must be
initialized suitably. The unknown initialization is a common problem in the literature [10, 21, 34]. In
some applications it can be assumed that initial conditions are known, but not for texture synthesis,
since in general, we want to approximate textures that originally were not generated by a reaction–
diffusion simulation. In our simulations, we initialize the morphogen concentrations by random
values uniformly distributed in intervals given by the ranges observed in the equilibrium state.

4 Experiments

For experiments, our method was implemented in Julia 1.8.2. On a recent PC, single-core CPU
computation times for parameter estimation from 100× 100 pixel test images ranged from approx.
15 s with cost function JI to approx. 900 s with JIV. Algorithmic optimizations and potential GPU
implementation are expected to reduce computation times significantly but are left for future work.

4.1 Synthetic patterns

In our first experiment, Figure 4, we use our model with the four different cost functions to estimate
parameters for a pattern (frame a) that has been generated by the Gray–Scott system so we can
compare the estimated parameters to the known ground truth, and visually assess the texture similarity.
In this experiment, we estimate only reaction parameters while keeping the diffusion parameters fixed.
We start with a setting in which the diffusion rates and reaction parameters were chosen close to the
ground truth (frames b–e). Next we perturb the input image with moderate Gaussian noise (frame f)
and try to estimate system parameters from the noise input image. Returning to the noise-free input
image, we test the ability of the method to find correct parameters from an initialization farther away
from the ground truth (frames k–n) and with wrong assumptions on the diffusion rates (frames o–r).
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Figure 4: Experiments with synthetic pattern. Parameter values are available as supplemental
material. (a) Pattern generated by Gray–Scott system. (b–e) Patterns synthesized after parameter
estimation from image (a) where correct diffusion rates and reaction parameters close to the ground
truth were used for initialization, and cost functions JI (b), JII (c), JIII (d) and JIV (e) used in the
optimization. (f) Pattern from (a) degraded by Gaussian noise, standard deviation 0.05. (g–j) Patterns
synthesized after parameter estimation from image (f), same parameters as in (b–e). (k–n) Same as
(b–e) but reaction parameters initialized farther away from the ground truth. (o–r) Same as (b–e) but
with fixed diffusion rates chosen lower than the ground-truth values.

Estimation with the gradient-based cost function JI (frames b, g, k, o) fails to reconstruct the proper
type of texture, and yields no texture at all under noise or with initialization too far from the ground
truth parameters (g, k). The cost function JII (frames c, h, l, p) which is based on proper system
simulation and intensity measure yields a reasonable reconstruction if initialized close to the ground
truth (c), even under moderate noise (h), but fails when initialized with more deviant parameters (l,
p). The HGM-based JIII (frames d, i, m, q) leads to parameters encoding the correct pattern type in
all noise-free cases (d, m, q) but fails under noise. The ORB-based cost function JIV (frames e, j, n,
r) succeeds in all cases. We remark that currently the method does not always cope well with initial
parameters far away from correct values. Improving robustness thus remains a goal for further work.

4.2 Real-world patterns

In our second experiment, Figure 5, we explore the ability of our model to adapt to real-world textures,
using examples from the Describable Texture Database [7]. Given that at the time being only the
Gray–Scott system is used, we select two images that resemble the typical spot-like and stripe-like
patterns generated by the Gray–Scott system, along with one that does not match either of these types
precisely (scaly snake skin). Parameter estimation here involves reaction and diffusion parameters.
Because of the limitations regarding initialization pointed out in 4.1, we run the estimation several
times with different initializations and report the (visually) best results.

7



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5: Experiments with real-world texture examples. Parameter values are available as sup-
plemental material. (a, f, k) Input images (100 × 100 pixels) clipped, rescaled and converted to
gray-scale from the Describable Texture Database [7], items dotted_0202 (a), striped_0101 (f) and
scaly_0167 (k). (b–e, g–j, l–o) Patterns synthesized after parameter estimation from images (a, f, k),
resp., using cost functions JI (b, g, l), JII (c, h, m), JIII (d, i, n) and JIV (e, j, o) in the optimization.

With cost functions JII and JIV, pattern-generating parameter sets are found in all cases, whereas JI
and JIII achieve this only for one and two, resp., of the textures. Only the ORB-based cost function
JIV succeeds in reconstructing the correct type of patterns in the spotted and striped textures. As can
be expected due to the isotropic nature of the dynamical system, the preferred direction of stripes
in the second example cannot be represented. For the scaly texture, cost functions JIII and JIV find
approximations by spot patterns where for JIV the scale roughly matches the quasi-periodic structure.

5 Summary and conclusion

We have demonstrated in this work how reaction parameters, or reaction and diffusion parameters
of a reaction–diffusion system for pattern formation can be estimated from nothing but an image
representing the steady-state distribution of one morphogen. Albeit restricted for the time being
to the types of patterns generated by one particular (Gray–Scott) system, this suggests that PDE
parameters can be used to describe textures by quantitative descriptors from which the textures can
be reconstructed. To best of our knowledge this is a novelty among quantitative texture descriptors
and opens avenues to new applications in texture processing such as compression of textured images.

Of course, to bring this approach to practical texture processing contexts still needs further develop-
ments. As already mentioned this involves speeding up computations by algorithmic optimizations
and GPU implementation. Regarding the method itself, modifications should be made to accom-
modate anisotropic features (see the stripe directions in Figure 5(f)) as well as the technicality of
handling overall brightness and contrast.

On a more fundamental level, however, two main generalizations appear paramount. On one hand,
it is necessary to integrate into the framework more types of pattern–forming reaction–diffusion
systems along with automated selection between these systems, thus transitioning from parameter
identification to system identification. On the other hand, more complex textures might not be
representable by a plain reaction–diffusion system but may be decomposed into simpler components
for which this is possible. We have made first steps along both directions of generalization in our
ongoing work, results of which we expect to present in a forthcoming publication.
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