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Abstract. Salient visual information in images is often concentrated
on contours or on regions where edges or curves change their direction
abruptly. It is therefore of utmost importance in the processing of images
to preserve this kind of information. Recently, a curvature-based denois-
ing method has been proposed which first transforms an image into a
level-line tree, then smoothes the level lines, and finally reassembles the
image from those. Curvature information generated in this approach has
also potential for further applications in image analysis.
Focusing on denoising, we transfer curvature-based smoothing to vector-
valued images. We replace level lines by pseudo-level lines (integral curves
of the vector field of directions of least vectorial contrast) and design a
robust algorithm for their extraction from a vector-valued image. In this
context we also propose a modification of the level line extraction from
grey-scale images for better rotational invariance. Since intensities along
pseudo-level lines are not constant, our method stores this information
along the pseudo-level lines, and performs an appropriate smoothing on
intensities. Finally we adapt the reconstruction process.
We present experiments on grey-scale and colour images to validate our
proposed modification of the original grey-scale method as well as our
new vector-valued curvature-based denoising method.

Keywords: Denoising · Curvature · Affine morphological scale space ·
Pseudo-level lines

1 Introduction

Due to the ubiquity of noise of various sources across image formation processes,
denoising continues to be a fundamental task of image processing. The purpose
of denoising is to remove noise while at the same time preserving as much as
possible the image features needed for further processing of images by humans or
computers. Telling apart noise from the relevant features is challenging, such that
denoising methods inevitably interfere with image features along with removing
noise. Together with the great variability in both noise sources and features that
need to be preserved depending on application context, this constitutes a major
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Fig. 1: Morphological Cat, constructed
by taking 38 points of maximum curva-
ture from the level lines, that represent
the contours, and then connecting them
with straight lines. From [4].

reason why even after decades of research there is no universal denoising method
that suits all kinds of applications. For example, methods that directly smooth
the source image by minimising an energy functional struggle with preserving
the contrast and sharpness of contours.

A long-standing observation [4] is that salient information in images, espe-
cially for human observers, is concentrated along contours as well as feature
points like angles or curvature extrema, compare the example in Fig. 1. This has
inspired researchers to design denoising methods that specifically focus on this
kind of features.

In [5] it is suggested to denoise images by extracting first the curvature
image, similar to Fig. 1, then denoising the curvature image, and obtaining the
final denoised image by reconstruction from the modified curvature image. It
turns out that curvature images are less affected by additive noise n, leading to
a better separation of salient image information and noise in the process.

Despite promising results, the method from [5] has so far only been studied
for grey-scale images. Our aim in this paper is to extend the approach to vector-
valued, such as (RGB) colour images. To this end, several obstacles need to be
overcome.

First, the concept of level sets as such is suitable for grey-scale images only,
and needs to be replaced by a suitable generalisation in the case of vector-valued
images. To this end, we resort to the concept from [6] in which lines of minimal
colour/vector contrast are proposed as level lines; for clarity, we will denote these
as pseudo-level lines. Adapting the level-line extraction procedure from [19] to
pseudo-level lines is the first component of our proposed method.

Second, as image intensities along pseudo-level lines are not constant as they
are along level lines in grey-scale images, richer intensity information must ac-
company an extracted pseudo-level line. In the smoothing step, it is therefore
necessary to not just smooth the pseudo-level line curves (which can be done
essentially by the same affine morphological scale space as for grey-scale images)
but also to take care of the intensity information. This is the second component
of our proposed method.

Third, we need to provide a way to (approximately) reconstruct the original
image from pseudo-level line information, which again is more complex than in
the case of grey-scale images.
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Our contributions. Our main contribution is the extension of the curvature-based
smoothing algorithm from grey-scale to vector-valued images, which relies on the
concept of pseudo-level lines as a replacement for level lines. We spell out the
necessary adaptations of, and additions to the algorithm step by step. Moreover,
we introduce a modified choice for pixel neighbourhoods for the sake of reducing
directional bias, which can also be used beneficially in the base algorithm for
grey-scale images.

Structure of the paper. In Section 2 we recall the curvature-based denoising
method for grey-scale images from literature, and introduce our modification of
pixel neighbourhoods. Our extension of the method to vector-valued images is
developed in Section 3. Section 4 is devoted to the experimental demonstration
of the techniques. A summary and outlook in Section 5 conclude the paper.

2 Curvature-Based Denoising of Scalar-Valued Images

Let us recall first the curvature-based denoising method for grey-scale images. We
largely follow [7] but introduce a small modification of the pixel neighbourhoods
that helps to avoid directional bias.

2.1 Level Line Tree

Level lines in a (space-continuous) grey-scale image are lines of constant intensity.
They are closed curves (where curves ending in the image boundary can be closed
by suitable boundary segments), and different level lines cannot cross each other;
of two level lines, either one encircles the other, or both lie apart. Any finite set of
level lines is therefore naturally organised in a Level Line Tree (LLTree), with the
image boundary as its root. This intuition also carries over to discrete images,
with the only caveat that segments of different discrete level lines can coincide,
but still a strict tree-order is established by inclusion and exclusion.

A level line is a closed list of edge elements (edgels). An edge element (edgel)
is given by a pair of neighbouring pixels, with the understanding that the space-
continuous curve represented by the level line passes between these pixels. One
of the pixels making up an edgel, the immediate interior pixel (IIP), is inside the
private region (pregion) of the level line. The other one represents the immediate
exterior pixel (IEP) outside this region. The sequences of immediate interior
pixels (IIPs) and immediate exterior pixels (IEPs) in the list of edgels progress
from pixels to neighbouring pixels; repetitions (i.e. subsequent edgels sharing
their IIPs or IEPs) are allowed. Closedness of the level line means that the first
and last entry of the list of edgels are identical. The pregion is represented by
a list of pixels. As for grey-scale images a private value (pvalue) can easily be
defined as either being the maximum or minimum intensity of all IIPs along the
level line, the pregion contains all pixels inside the region with intensity equal
to the pvalue. Considering the connectedness graph of an image, i.e. the graph
whose vertices are the pixels, and edges connect exactly those pixels which are
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(a) (b) (c) (d)

Fig. 2: Neighbourhood types as proposed in [19]; dark centre pixels are shown
surrounded by neighbours in grey. (a) 4-neighbourhood, (b) 8-neighbourhood,
(c) 6-neighbourhood of type 1, (d) 6-neighbourhood of type 2.

neighbours (thus, edges represent edgels), one sees that a level line represents
a cut of this graph. The pregion of the level line corresponds to one of the
connected components into which the connectedness graph is split by the cut.

Defining a curve as a list of pixels, a level line is associated with two curves:
the curve-immediate-interior-pixel (curveIIP) that contains all IIPs, and the
curve-immediate-exterior-pixel (curveIEP) of all IEPs.

To establish the LLTree, each line is stored in a node together with its pvalue
and pregion, and an unordered list of references to their children (child nodes).
The LLTree contains all these nodes from the uppermost parent node down to
the bottom child node. Here the first node, the uppermost parent, always has a
level line that expresses the border of an image. A child of the parent describes a
region inside the parent’s region. Two or more children are called siblings. They
are in a common list of references and on the same level in the LLTree.

Note that a parent and a child node can have common IIPs and IEPs. Two
siblings can only have common IEPs.

Neighbourhoods. The set of edgels available in the extraction process depends
on a choice of neighbourhoods, see Fig. 2. Admissible edgels are always the pairs
(p, qi) of a centre pixel p as IIP and one of its n neighbours qi (i = 0, . . . , n− 1
where n is 4, 8 or 6) as IEP. Each of these choices, however, comes with a
downside. Using 8-neighbourhoods, Fig. 2b, on the pixel set of the given image
implies a non-planar connectedness graph due to the intersection of diagonal
edgels. However, representing level lines, thus cuts of the connectedness graph,
by sequences of edgels, actually relies on the assumption that the connectedness
graph is planar.

For the further discussion we remark that the level line extraction process will
be designed in a way that it proceeds from edgel to edgel via the meshes of the
connectedness graph. Whenever a level line enters one mesh of the connectedness
graph via an edgel, one has to determine by which edgel it leaves the mesh. This
will be particularly easy if the meshes of the connectedness graph are triangles:
In this case, the exit edge is always adjacent to the entrance edge of each mesh.
It only takes to choose between these to adjacent edges by keeping fixed either
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Fig. 3: Image region Ω containing 5 × 5 orig-
inal pixels (grey), extended by dummy pix-
els (orange). Note that original pixels have 8-
connectedness, whereas dummy pixels have 4-
connectedness.

the IIP or the IEP. Meshes circumscribed by more than three edges need more
complicated case distinctions.

Returning to neighbourhood choices, the 4-neighbourhood, Fig. 2a, leads to a
connectedness graph with quadrilateral meshes, which is therefore unfavourable
for the level line extraction process. For this reason, the 6-neighbourhoods from
Fig. 2c and Fig. 2d have been proposed; they yield planar graphs with triangular
cells that are a perfect fit for the extraction algorithm. Unfortunately, this comes
at the cost of sacrificing symmetry by preferring one diagonal direction over the
other. Thereby they introduce a directional bias which is generally unfavourable
in image processing; indeed, it leads to visible artifacts in the smoothed images,
cf. Fig. 12 in Section 4 where diagonal streaks in the direction of the preferred
diagonals are clearly visible.

We therefore favour an alternative approach. We insert dummy pixels lo-
cated at the common corners of four adjacent pixels of the original image grid,
see Fig. 3. By bilinear interpolation, each dummy pixel is assigned the average of
the intensities of the four surrounding original pixels as its intensity value. The
neighbourhood relation within this extended set of pixels, and thereby the con-
nectedness graph, is defined as follows. Each original pixel has eight neighbours:
the four original pixels which are located next to it in vertical and horizontal
direction, and the four dummy pixels next to it. In contrast, each dummy pixel
has only the four original pixels next to it as neighbours. In Fig. 3 this is vi-
sualised by showing original pixels as octagons but dummy pixels as squares.
Pixels are considered neighbours if and only if they have a common border in
this representation. With this definition, the connectedness graph is planar and
consists entirely of triangular meshes. Each mesh is made up by two original
pixels and one dummy pixel. Thus, the graph meets the needs of the extraction
algorithm, while retaining all symmetries of the regular pixel grid.

Level line extraction. A new level line always begins with a start edgel α.
Let the actual edgel be e = (p, q). Then the NextPixel(p, q) operation returns
the pixel r that either is the next IIP or IEP, see Fig. 4.
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Fig. 4: Two choices for the next edgel: e1
or e2. Edgel e = (p, q) is already in the
boundary. In case r is inside the region,
the next edgel is e1 = (r, q). Otherwise r
becomes IEP and thus the next edgel is
e2 = (p, r).

Fig. 5: Routine TreeLevelLine
for scalar valued images.

As soon as the start edgel α is reached again, the level line is closed, and fur-
ther pixels are investigated. These are either pushed to the pregion or represent
IIPs of a child’s start edgel, meaning a child line is passing through.

The overall algorithm to build the LLTree is visualised in Fig. 5. In the
recursive part (CreateTree), all children are successively added to the parent
currently processed within the subroutine FindAllChildLines.

Within FindChildLine, edgels are added successively until the start edgel is
reached again. The edgel (p, q) is either followed by (r, q) or (p, r), depending
on whether r (returned from NextPixel(p, q)) is declared to be an IIP or IEP.
In grey-scale images this decision is made using the pvalue as threshold. Let us
assume the pvalue v of the current level line is less than its parent’s pvalue. Then
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Fig. 6: Example grey-scale image (10×5) with dummy pixels inserted. Ω, X, Y, Z
are the four regions with identical intensities each.

Fig. 7: Level lines in Fig. 6. ∂Ω (black) is the parent of ∂X (green) and ∂Y (red).
∂Z (blue) is a child of ∂X. ∂X and ∂Y are siblings.

pixels with intensity lower than v are IIPs, and the others IEPs. In the case v
is higher than the parent’s pvalue, only pixels with intensity greater than v are
IIPs.

2.2 Level Line Shortening

Discrete curvature of level lines. Let Γ = {x(s) : s ∈ [0, L],
‖x′(s)‖ = 1} be a sufficiently smooth (C2) curve in arc-length parametrisa-
tion. The second derivative x′′(s) then always points in normal direction, i.e.
[12]

x′′(s) = κ(s)n(s) (1)

with some function κ(s) which is called curvature of Γ , and n(s) denoting the
unit normal vector n(s) ⊥ x′(s). Assuming that the moving frame (x′(s),n(s)) is
positively oriented, κ(s) > 0 indicates that the curve is locally bent in mathemat-
ically positive sense whereas κ(s) < 0 indicates it turns in the mathematically
negative sense. The definition of κ via arc-length parametrisation is transferred
to curves in arbitrary parametrisation by reparametrisation, making κ(s) ≡ κ(x)
in fact dependent only on the shape but not the parametrisation of the curve.
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Fig. 8: Definitions and discretisation
of the level line to display the com-
putation of the discrete curvature at
the vertex Pj−1PjPj+1, from [7]. The
curvature is κ(Pj) = 1/rj , with rj =
‖PjC‖.

In fact, for κ(x) 6= 0, 1/|κ(x)| is the radius of a best-fit (osculating) circle to Γ
at x.

For any non-singular point x of a sufficiently smooth (C2) image u : R2 → R,
the curvature κ(x) of the level line of u passing through x can be computed
as [7,17]

κ(x) =
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2x + u2y)
3/2

(x) . (2)

Regarding the sign of κ, level lines are understood here to be oriented such that
the normalised local image gradient vector ∇u/‖∇u‖ points to the right of the
level line, i.e. ∇u/‖∇u‖ = −n locally.

As pointed out by Mondelli and Ciomaga [16], direct implementation of (2)
by finite difference scheme (FDS) models as done in [2] and [9] suffers from
numerous artifacts. Therefore it is preferable to compute instead the curvature
directly on the level lines.

To this end, let Γ be a closed discrete curve denoted as Γ = {Pj(xj , yj)},
with j ∈ {0, . . . , N} and P0 = PN . We assume that Γ approximates a (space-
continuous) level line; in fact, we will use for Γ the curveIIP of a discrete level
line. Building on the relation between curvature and osculating circles, the cur-
vature κ(Pj) of the discrete curve at Pj can be defined as

κ(Pj) := ±1/rj , (3)

with the radius rj = ‖PjC‖ computed with the three points Pj−1, Pj , Pj+1 (see
also Fig. 8) and the sign consistent with (1), compare Fig. 8.

As noted in [7], the discrete curvature at point Pj is

κ(Pj) =
−2 sin(ϑj)

‖Pj−1Pj+1‖
=

−2 det (PjPj−1 PjPj+1)

‖Pj−1Pj‖ ‖PjPj+1‖ ‖Pj−1Pj+1‖
, (4)

with

det (PjPj−1 PjPj+1) := det

(
xj−1 − xj xj+1 − xj
yj−1 − yj yj+1 − yj

)
. (5)



Curvature-Based Denoising of Vector-Valued Images 9

AMSS – Affine morphological scale space. Affine morphological scale space
is a curvature-driven process that preserves invariance properties such as mono-
tonicity, morphology and affine invariance [1,15].

The affine scale space can be interpreted as an intrinsic heat equation [13].
Let σ 7→ x(t, σ) be a Jordan arc (or curve) for each scale t. Then, in any neigh-
bourhood without an inflection point, the affine scale space

∂x

∂t
= κ(x)1/3 n(x) (6)

is equivalent to the intrinsic heat equation ∂x/∂t = ∂2x/∂σ2 with parametrisa-
tion σ (affine length) [13,18].

To implement (6) the geometric scheme proposed by Moisan [15] is used. The
latter equation can be interpreted as an alternating filter, switching between
affine erosion and dilation in dependence of the scale space parameter σ. This
can be realised working with affine erosion on the individual convex and concave
parts of the discrete curve Γ . Therefore first the inflection points Ei = Pj(i) must
be detected. After the resampling process, where points are added/removed to
get good smoothing results, each convex component

Ci = (Ei = Pj(i), Pj(i)+1, Pj(i)+2, . . . , Pj(i+1) = Ei+1) (7)

is processed by affine erosion resulting in an envelope of σ-chords

Cσi = (Ei, P
σ
j(i), P

σ
j(i)+1, P

σ
j(i)+2, . . . , P

σ
j(i+1), Ei+1) , (8)

a set of middle points of σ-chords with unchanged inflection points [7]. This is
important here because the convex and concave parts are glued together after
each iteration. A σ-chord Cσi is defined as a segment connecting two points of
the (discrete) curve that cuts off a (polygonal) area of size σ between itself and
the curve (see Fig. 9).

The larger σ, the less the accuracy of the geometric scheme. Hence the affine
shortening process is iterated with a small σ as often as needed to achieve the
desired smoothness. The smoothing process can be described with Algorithm 1.

Algorithm 1 Smooth Curves
1: for all curves c ∈ LLTree do
2: while (desired scale t not reached) do
3: split c into convex and concave parts
4: resample c
5: affineErosion(c)
6: resample c

For all curves ∈ LLTree the process of splitting, resampling and affine erosion
is iterated until the desired scale t is reached (lines 2–5). As a last step the new
curve (σ-chord) is resampled again.
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(a) (b)

Fig. 9: Affine erosion of a corner, from [15]. (a) The affine erosion of a corner
results in a hyperbola. σ displays the area cut after several iterations. (b) Evo-
lution of a hyperbola (Hi,k) resulting from two edges. σi,k is the area cut after
a couple of iterations, whereas σ (note that σ includes σi,k) analogously to (a)
displays the area trimmed after many iterations.

2.3 Reconstruction

For scalar-valued images the regions can be filled straightforward by iterating the
LLTree from top to bottom and printing the inside of the regions with the level
lines’ pvalue. Herein the children’s pregion overprint their parents’. As siblings
do not affect each other, it is irrelevant which region is filled first on the same
level of the LLTree.

3 Curvature-Based Denoising of Vector-Valued Images

This section is devoted to adapting the denoising method recalled in the previous
section to vector-valued images.

3.1 Pseudo-Level Lines

Unlike grey-scale images, vector-valued images are not filled by curves of constant
intensity, i.e. level lines. As a surrogate for these, it is proposed in [6] to consider
the integral curves of the directions of minimal vectorial change, also denoted
as level lines there. For a clear distinction, we will use the term pseudo-level
lines in the following. The first step towards computing pseudo-level lines is the
computation of gradients of vector-valued images; following [6] this can be done
using standard tools from Riemannian geometry [14].

For a (space-continuous) vector-valued image u(x) : R2 → Rn, at each
location x = (x, y)T the directional derivative of the vector-valued image u at x



Curvature-Based Denoising of Vector-Valued Images 11

in the direction of v then is the vector

∂vu(x) = Du(x)v (9)

where

Du(x) =

∂xu1(x) ∂yu1(x)
...

...
∂xun(x) ∂yun(x)

 (10)

is the Jacobian matrix of u at x. The norm ‖∂vu(x)‖ yields the rate of change of
the values of u in the direction of v and can be written as a positive semidefinite
quadratic form of v by

‖∂vu(x)‖2 = (Du(x)v)TDu(x)v = vT(Du(x)TDu(x))v . (11)

As a result, in each non-singular point x of the image domain there are two mutu-
ally orthogonal directions v1,2(x) in which the greatest and least rates of change,
respectively, are found; v1,2 are the eigenvectors of J(x) := Du(x)TDu(x). (The
matrix J(x) is also known as structure tensor.) The vector field v1(x) denoting
the directions of fastest change can be understood as surrogate of a gradient
vector field of u, and the vector field v2(x) of directions of slowest change as
surrogate of a level-line direction field; thus the pseudo-level lines are the inte-
gral curves of the vector field v2(x). Note that in the continuous case, under
regularity conditions, pseudo-level lines are closed curves, see [3], [10], [11].

The following subsections 3.2–3.4 correspond to the three steps of our overall
algorithm for curvature-based smoothing of vector-valued images.

3.2 First Step: Construction of the Pseudo-Level Line Tree

From here on we assume that the vector-valued image is an RGB colour image
with the colour channels R, G, B. Unlike for grey-scale images, a unique pvalue
can not be defined for vector-valued images. Nevertheless, we define the mean
value of all IIPs as pvalue in order to push a pixel p̂, that fulfills the criteria(

Rp̂ −RnIIP

)2
+
(
Gp̂ −GnIIP

)2
+
(
Bp̂ −BnIIP

)2
< s2 , (12)(

Rp̂ −RnIEP

)2
+
(
Gp̂ −GnIEP

)2
+
(
Bp̂ −BnIEP

)2
< s2 , (13)

where nIIP, nIEP represent the nearest IIP, IEP of the actual level line, and
s ∈ R is a tolerance limit, to a pseudo-level line’s pregion. Additionally, p̂ must
have a pixel q̂n in its immediate neighbourhood with radius r = 5, that is already
part of a pseudo-level line.

Pseudo-level line extraction. In order to build a discrete pseudo-level line
for vector-valued images, we need strict criteria for a pixel r to either be the
next IIP or IEP. To this end, we start from the 2× 2 structure tensor

J = ∇R ∇RT +∇G ∇GT +∇B ∇BT (14)
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where∇c = (∂xc, ∂yc)
T for c = R,G,B can be computed using central differences

involving the four immediate neighbours of the dummy pixel. (In each step, only
one of the three pixels p, q, r represents a dummy pixel, the others are integer.)

The spectral decomposition of the structure tensor J = λ1v1v
T
1 + λ2v2v

T
2

with the eigenvalues λ1 ≥ λ2 ≥ 0 and eigenvectors v1 ⊥ v2 yields the (pseudo-)
gradient direction v1 and pseudo-level line direction v2. The projection matrix

Z =

〈∇R, v1〉〈∇G, v1〉
〈∇B, v1〉

 , (15)

is a 3×1matrix that projects a 3×1 Red-Green-Blue (RGB)-vector (the intensity
of a pixel) onto the gradient in the colour space. Thus,

p(p) = pp =
〈
Z,
(
Rp Gp Bp

)T 〉 (16)

is the projection of the pixel p onto this gradient; pq and pr are computed
analogously. To give a certain criterion for r to be the next IIP or IEP, let
α̂ ∈ [0, 1] be the division ratio that splits pp and pq into two parts, then

pα̂ = (1− α̂) · pp + α̂ · pq . (17)

If pp > pq, the eigenvector v1 is replaced with −v1 such that pp ≤ pα̂ ≤ pq is
applicable. The pixel r can now certainly be chosen as next IIP if

pr ≤ pα̂ , (18)

and as IEP otherwise.
For the first edgel after the start edgel, α̂ is initialised with 0.5. Every time

a new edgel is added to the level line, α̂ is updated for the next step via

α̂ =
pα̂ − pr
pq − pr

if r = IIP , or α̂ =
pα̂ − pp
pr − pp

if r = IEP . (19)

Crash handling. Although in the continuous domain pseudo-level lines are
closed curves, the discrete algorithm described so far can fail to yield a closed
level line. This is essentially due to accumulated errors in the estimation of
colour gradient projection matrices Z in the course of the computation. This
means that the sequence of pseudo-level line edgels might not return to the start
edgel exactly. If this is the case, the pseudo-level line LL crsahed into itself and
must be modified. Crashes can both happen from the inside and the outside. An
inside crash occurs if some IIP ∈ LL is picked as a new IEP. Crashes from the
outside are detected if some IEP ∈ LL is selected as new IIP. Another possibility
is, that a whole edgel β̂ already ∈ LL is found again. If the IIP(β̂) is found first,
LL crashed into itself from the inside. If IEP(β̂) is reached first, the crash occured
from the outside.

In both cases, one edgel ∈ LL needs to be changed: (p, r) ↔ (r, q). Starting
from this edgel the pseudo-level line is recomputed. In the case of an inside crash,
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candidate edgels i ∈ {1, . . . , l − 1} – with l = length(LL) – for a change are of
the type

(pi, ri)→ (ri, qi−1) , (20)

forcing LL to make a turn to the outside. In the other case, LL is forced to make
a turn to the inside, meaning admissible edgels are of the type

(ri, qi)→ (pi−1, ri) . (21)

In most cases, more than one edgel lends itself as a candidate. To implement
a reliable rule to determine the best candidate, we assign alternative edgels as
described in (20) and (21) with costs ψ that measure how expensive it is for LL
to take the alternative direction. The more clearly the decision is for r to be IEP
or IIP (18), the higher the costs for the edgel to take r wrongly as IIP (20) or
IEP (21), respectively. Depending on the decision for r, we compute

ψ =
pα̂ − pr
pq − pp

if r = IIP , or ψ =
pr − pα̂
pq − pp

if r = IEP . (22)

When LL is approximated, from all potential candidates the one with the lowest
costs is modified. Each level line modified has a handicap Ψ , initialised with the
costs ψi of the first changed edgel ei. Let the second crash occur from the same
side with ej with i 6= j, then Ψ is either set to ψj , if j < i, or ψj is added to Ψ
(Ψ = ψi + ψj), if j > i. Note that Ψ is added to all costs ψi+1, . . . , ψl−1 of the
edgels ∈ alternative path (ei+1, . . . , el−1) within each crash.

Intensity handling. For vector-valued images the intensities must be carried
along the pseudo-level lines for each node in order to reconstruct a clean im-
age after having applied affine morphological scale space (AMSS) smoothing.
Special attention is paid to IIPs shared by parents and children: In such a case
RGB(IIPparent) is replaced with RGB(IEPchild) in order to have a consistent
treatment of which RGB values are associated to the inner and outer sides of
both pseudo-level lines, respectively.

Similar modifications regarding coincidences between IIP/IEP pixels of sib-
lings are under investigation but currently not part of our implementation.

3.3 Second Step: Smoothing

Smoothing the pseudo-level lines: AMSS. Affine morphological scale space
works equally to scalar-valued images with respect to process of curve evolution
itself. Additionally, for vector-valued images the curveIEP is evolved too.

Furthermore, the intensities of each subpixel carried along the pseudo-level
line must be stored and, if necessary, modified correctly. This is only possible
with huge expense, because the number of subpixels ∈ c changes within the
smoothing process. New points inserted to the curve get the arithmetic mean
value, computed with the intensities of the immediate former and immediate
next subpixel, associated.
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Smoothing the intensities along curves. The second step of denoising is
to smooth the vectorial intensities along the curves. As these intensities affect
the quality of the denoised image, a smooth colour gradient is desired. Therefore
linear explicit diffusion is applied to all curves.

Denoting by vi the RGB value of the pixel pi ∈ curve c with i ∈ {0, . . . , l},
l = length(c), we smooth the discrete 1-D signal (v0, . . . , vl) by linear diffusion
[21, Chap. 1]. In doing so, we approximate the diffusion PDE vt = vxx by the
standard explicit finite-difference scheme

vk+1
i = vki + τ(vki+1 − 2vki + vki−1) . (23)

for iteration numbers k ≥ 0, starting with the given signal in step k = 0 and
assuming a spatial step size of 1. This explicit scheme is stable for time step sizes
τ ≤ 1/2. In the present paper, we run three iterations, amounting to a diffusion
time t = 1.5.

3.4 Third Step: Reconstruction

Given the curvature image – shortened level lines printed equipped correct in-
tensities – it is necessary to reconstruct, finally, a clean denoised image.

To this end, the intensities (RGB) of IIPs and IEPs from the curvature
image are fixed. Using these as Dirichlet boundary conditions, intensities on the
remaining pixels can be inpainted by linear diffusion [21, Chap. 1] which should
in principle be computed until numerical convergence to a steady state. Using a
standard explicit finite-difference scheme for 2D diffusion, one computes

uki,j =
(
1− 4

τ

h2

)
uk−1i,j +

τ

h2
(
uk−1i−1,j + uk−1i,j−1 + uk−1i,j+1 + uk−1i+1,j

)
(24)

for all non-IIP/IEP pixels (i, j) and iterations k = 1, 2, . . . until

|uki,j − uk−1i,j | < ε for all i, j. (25)

In (24), τ denotes the time step size and h the spatial grid step size of the image;
assuming h = 1 the scheme is stable for τ ≤ 1/4.

The number of iterations until the stopping condition (25) is met can be
reduced by a suitable initialisation; to this end, the pregion of each node nd l
with l = 0, . . . ,number(nodes)− 1 can be prefilled line by line by colouring the
pixels u0i,j ∈ pregion(nd l) with the intensity of the last met IIP(nd l) in this line.

4 Experimental Demonstration

In this section we will illustrate curvature-based denoising of grey-scale and
colour images with some example images. All methods were implemented entirely
in C++ on the basis of the standard library, some components being adapted
from the published implementation of [7].

Before we turn to show actual image smoothing examples, we discuss the
visualisation of curvature maps.
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Fig. 10: Viridis colour bar.

Fig. 11: Rescaled Viridis colour bar.

4.1 Curvature maps and visualisation

Curvature maps give a coloured information about the curvatures present in
the denoised image. As not all pixels are part of a level line, we compute first
by (4) the curvatures in those pixels that are IIPs of the shortened level lines.
Fixing these as Dirichlet boundary conditions, we inpaint the curvature map to
the remaining pixels by running linear diffusion until numerical convergence to
a steady state is reached, analogous to Section 3.4.

For visualisation, the so obtained dense curvature field (ci,j) with values in
[−1, 1] is coloured on a modification of the Viridis colour scale [20] (see also
[8]) reaching from dark blue/purple, (R,G,B) = (68.0, 1.0, 84.0), for ci,j = −1,
via blue/green, (R,G,B) = (32.0, 146.0, 140.0), for ci,j = 0, to yellow/orange,
(R,G,B) = (253.0, 231.0, 37.0), for ci,j = 1.

Whereas the original Viridis colour scale, Fig. 10, ensures linear contrast
between different values visualised, we use a modification in which instead of ci,j
itself the quantity tanh(10 ci,j) is coloured by the original Viridis scale, resulting
in enhanced colour contrast for curvatures around zero as shown in Fig. 11.

4.2 Image Smoothing Experiments

First, we show an experiment on a grey-scale image, Fig. 12, to demonstrate the
effect of the modified neighbourhood setting with dummy pixels as introduced in
Section 2.1. Note that the denoising results in Fig. 12b and Fig. 12c are visibly
biased to the respective diagonal directions of the chosen 6-neighbourhoods.

For vector-valued images, first the effect of AMSS is highlighted with Fig. 13.
Further, in Fig. 14 we show a denoising result for a colour image with Gaussian
noise. In Fig. 15 we demonstrate the effect for impulse noise.

With our non-optimised implementation, run times ranged from about 2 min
(grey-scale experiment, Fig. 12) to about 10 min (noise-free colour experiment,
Fig. 13); surprisingly, the noisy colour images in Fig. 14 and Fig. 15 were pro-
cessed much faster than Fig. 13, probably due to the dominance of much shorter
pseudo-level lines. At any rate, we expect that run times can be significantly
reduced by future algorithmic optimisations.

5 Summary and Outlook

In this work, we have extended the curvature-based denoising algorithm for
grey-scale images from [7] to vector-valued, such as RGB colour, images. In
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(a) Noisy source (b) SC2, E1
6

(c) SC2, E2
6 (d) SC2, E4 + E8

Fig. 12: The level lines in the source image camera40.pgm [256 × 256] (a) noisy
with Gaussian noise (σ = 40) are extracted using different edgel types (cf. Fig. 2
in Section 2.1). (b)–(d) Denoised images after having applied AMSS smoothing
with SC2. (b) 6-connectedness of type 1 (E1

6), (c) 6-connectedness of type 2 (E2
6)

used. (b) shows stripes 45◦ in lower right, (c) 45◦ in upper right direction. The
4- (for dummy pixels) and 8-connectedness edgels (for integer pixels) – E4 +E8

– used in (d) remove the artifacts.

the course of this extension, we have designed a robust extraction algorithm for
pseudo-level lines. Due to the absence of a usable pvalue in vector-valued images,
the intensities must be carried along each line in a properly manner. Special
handling is required in certain configurations where nested discrete pseudo-level
lines touch each other.

The smoothing process for level lines using AMSS could be transferred verba-
tim to pseudo-level lines. However, along with smoothing the pseudo-level lines
their attached intensity information needs to be smoothed as well.

Finally, the reconstruction step required again an adaptation because for
vector-valued images it is no longer sufficient to fill private regions with constant
values. Diffusion inpainting was used to overcome this difficulty.
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(a) Source 402× 302 (b) CurvImg. SC5

(c) Smoothed SC5 (d) CurvMap(b)

Fig. 13: Smoothing a colour image. (a) Image flowers. (b)–(d): Result of AMSS
smoothing with SC5 applied to the 96 744 level lines. (Image source: https://
cs.colby.edu/courses/S19/cs151-labs/labs/lab04/Flowers.png, accessed
2022-02-02. Author: Colby)

(a) Noisy source 502× 207 (b) Smoothed SC2

Fig. 14: Denoising of a colour image with Gaussian noise. (a) Im-
age HoheMunde40 degraded by Gaussian noise (σ = 40). – (b) De-
noised by applying AMSS smoothing with SC2 to the 206 842 level
lines. (Image source: https://www.telfs.at/files/user_upload/915x375/
wohnen-leben-hohe-munde-hausberg-telfs-02.jpg, accessed: 2022-02-02.)

By experiments the viability of the approach was demonstrated. We presented
processed colour images as well as exemplary curvature maps. Ongoing work is,
on one hand, directed at algorithmic optimisations.

https://cs.colby.edu/courses/S19/cs151-labs/labs/lab04/Flowers.png
https://cs.colby.edu/courses/S19/cs151-labs/labs/lab04/Flowers.png
https://www.telfs.at/files/user_upload/915x375/wohnen-leben-hohe-munde -hausberg-telfs-02.jpg
https://www.telfs.at/files/user_upload/915x375/wohnen-leben-hohe-munde -hausberg-telfs-02.jpg
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(a) Noisy source 400× 300 (b) Smoothed SC1

Fig. 15: Denoising of a colour image with impulse noise. (a) ImageMTBIN20_cbc
degraded by synthetic impulse noise where 20% of all pixels are replaced with a
random RGB value. – (b) Denoised by applying AMSS smoothing with SC1 to
the 206 726 level lines.

On the other hand, as already pointed out in [7], denoising is just one applica-
tion of the curvature-based image processing paradigm underlying this work. The
sub-pixel localised curvature information extracted in the course of the method
bears potential for a range of further applications like image registration, seg-
mentation, sharpening, or feature extraction for computer vision applications;
note that points with extremal curvature such as corners are, in different formu-
lations, long-established features in computer vision. With our curvature-based
analysis method for vector-valued images the new paradigm can also be made
available for colour images.
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