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Abstract. Though graph cut based segmentation is a widely-used technique, it 

is known that segmentation of a thin, elongated structure is challenging due to 

WKH� ³VKULQNLQJ� SUREOHP´�� � 2Q� WKH� RWKHU� KDQG�� PDQ\� VHJPHQWDWion targets in 

medical image analysis have such thin structures.  Therefore, the conventional 

graph cut method is not suitable to be applied to them.  In this study, we 

developed a graph cut segmentation method with novel Riemannian metrics.  

The RiemanniaQ�PHWULFV�DUH�GHWHUPLQHG�IURP�WKH�JLYHQ�³LQLWLDO�FRQWRXU�´�VR�WKDW�

any level-set surface of the distance transformation of the contour has the same 

surface area in the Riemannian space.  This will ensure that any shape similar 

to the initial contour will not be affected by the shrinking problem.  The 

method was evaluated with clinical CT datasets and showed a fair result in 

segmenting vertebral bones.  
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1 Introduction  

Graph cuts are one of the most widely used techniques for segmentation tasks in 

image analysis.  The biggest advantage of the algorithm is that it can solve a 

segmentation problem as a global optimization problem without iterative calculation, 

and it guarantees a globally optimal solution [1].  The typical cost function 

minimized by the algorithm consists of 2 terms; a spatial coherency term and a data 

term, which are defined as follows: 
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where Dp is the data energy, Vp,q is the smoothness energy, N is the set of 

neighborhood pairs, fp is the label assigned to the pixel p, and P are all pixels in the 

image [2].  Here, the 1st term (spatial coherency term) can be considered as a term 

which evaluates the length (in 2-D) or area (in 3-D) of the boundary, which is 

modulated with the contrast in the image.  Therefore, minimizing the energy using 

this term causes a bias towards shorter boundaries.  This behavior is known as 



³shrinking bias´ [3].  It causes severe problems especially when the target object has 

a long, thin spine-like process.  Unfortunately, elongated structures are very 

common in anatomical objects.  This fact significantly aggravates the segmentation 

of e.g. vertebrae in CT images and causes significant segmentation errors [4].  

Though a number of methods have been reported to address the problem, such as [3] 

and [5], to the best of our knowledge, no simple way to avoid it has been presented. 

In 2003, Boykov and Kolmogorov reported a method to construct a graph where 

cut metric approximates any given Riemannian metric, and utilized it for image 

segmentation [6].  The metrics were defined and calculated from the gradient 

information of the image to be segmented. 

In this paper, we propose a novel method to avoid the shrinking problem by 

performing graph cuts in a Riemannian space.  The Riemannian metrics is calculated 

not from the image itself but from a predefined shape template, or, ³initial contour.´  

Although the position and pose information of the target object is needed in advance, 

no other prior information like any ³seed region´ is required. 

The basic idea is to compose a 3-D Riemannian space in which any surfaces 

parallel to the initial contour (an isosurface) has the same surface area.  By 

performing graph cut segmentation in this 3-D Riemannian space, the inside and 

outside of the object can be considered and handled in the same way, so that the 

spatial coherency term serves as an evaluator of how the segmentation result differs 

from its closest isosurface.  Therefore, a ³shrinking problem´ in the usual sense 

cannot occur. 

2 Methods 

The basic notion of this segmentation method is to perform graph cut-based 

segmentation in a Riemannian space which satisfies the following conditions: 

1) It can be defined everywhere in the input image (excluding the points where the 
distance transformation of the initial contour, dist(x), is not dif ferentiable). 

2) Any isosurface (level set surface) of dist(x) ² i.e. the set of points x with dist(x) 
= const ² has the same surface area. 

The ³initial contour´ approximates the object to be segmented (e.g. the mean shape 

of the target object).  It is assumed that the given grayscale image and the initial 

contour is registered rigidly in advance.  Then, the metrics of the Riemannian space 

are determined and calculated from the initial contour, so that any isosurface becomes 

parallel to each other and has the same surface area.  Although such a Riemannian 

space has some singular points with indefinite metrics, our method can be performed 

in a stable manner even with them. 

2.1. Calculation of the Riemannian Metrics 

In order to apply the graph cut algorithm in Riemannian space, the Riemannian 

metrics at every grid point must be determined in advance.  In this study, the metrics 

were calculated from the distance map of the initial contour dist(x).   



The metric tensor G at any point on the initial contour is defined to be isometric, 

thus, equal to an identity matrix.  At any other point, the metrics are defined so that 

the sum of the area of any iso-surface (any level set of the distance map dist(x) = d ) 

will be identical.  More detail on the calculation of the metrics will be given in 

Sections 2.1.1 and 2.1.2. 

2.1.1. Metrics Calculation from Curvatures of the Distance Function.  Fig. 1 

illustrates the basic idea of the metrics calculation (in a 2-D space for explanatory 

usage.)  Suppose that the metrics at the point xd is to be calculated.  Let the 

(outside-positive) signed distance of xd from the initial contour be d. 

� � ddist d  x  (2) 

So, there must be a point x0, on the initial contour, whose distance from xd equals d. 

Let the initial surface (a curve for this 2-D example) be S0, and the isosurface 

including xd be Sd.   
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Fig. 1. Determination of the metrics.  (left) The line segment l0 and ld are determined from the 

curvature radii, �0
-1 and �d

-1, of the distance map. (right) Corresponding rectified presentation of 

the Riemannian space, in which the lengths of the two line segments are identical. 

Let the curvature of the curve S0 at x0 be �0, and that of Sd at xd be �d (see also Fig. 

1).  Here, the curvatures are defined to be negative when the curve is convex.  

Under the assumption that both curvatures are negative (or both positive), there must 

be a point xsingular where the curvature becomes infinite.  Note that both curves S0 and 

Sd can be locally approximated as arcs whose center point is xsingular, as shown in Fig. 

1.  Therefore, the curvature radii (the inverses of the curvatures) at x0 and xd equal 

their distances from xsingular.  Thus, the curvatures satisfy the following equation: 
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Suppose that there are 2 minimal line segments, l0 and ld, which are parallel to the 

isosurfaces.  Let further the Euclidean lengths of the two segments be l0
E
 and ld

E
 and 

the proportion of them be identical to the proportion of the curvature radii �0
-1

 and �d
-1

.  

Using Formula (4), the proportion is calculated as: 
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In order to achieve the equalization of all iso-surface areas, the lengths of l0 and ld 

in a sense of Riemannian geometry, l0
R
 and ld

R
, must be identical (Fig. 1, right).  

According to the Riemannian geometry theory, the length of a minimal line segment l 

can be approximated as: 

Gvvtllength #)(  
(6) 

where the length and direction of the vector v are those of the minimal line l, and a 

symmetric matrix G is the Riemannian metric tensor at that point.  Furthermore, we 

have defined the metrics on the initial contour as Euclidean metrics, so that the 

metrics tensor on the initial contour, G0, is the identity matrix I.  Thus, the length l0
R
 

is equal to its Euclidean equivalent l0
E
.  On the other hand, given the metric tensor 

Gd at the point xd, the length ld
R
 is calculated as: 
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where w is a unit vector with the same direction as ld. 

Consequently, the metric tensor Gd must satisfy the formula below: 

� �21 ddd
t �� NwGw  (8) 

To satisfy (8), we defined the tensor Gd as follows: 

� �� � t
dd d RRG ���� 1,1diag 2N
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Here, R is an orthogonal matrix whose column vectors w and n are unit vectors 

perpendicular and parallel to the gradient vector of the distance map, respectively. 

2.1.2. Metrics Calculation for 3-D Volumes.  In order to extend the metric 

calculation to a 3-D space, the metrics must be calculated from two principal 

curvatures of the given isosurface, instead of only one curvature in 2-D.  When the 

1
st
 and 2

nd
 curvatures are given as 1N  and 2N , and the corresponding principal 

directions are given as unit vectors w1 and w2, the metric tensor can be defined as: 
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d dd RRG ������ 1,1,1diag 2
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Using these metrics, the areas of all isosurfaces become equal. (The proof is 

omitted due to space limiting.) 



2.2. Modification of the Edge Weights 

In order to perform graph cut in the Riemannian space, both the data term and the 

spatial coherency term must be adequately modified.  The former can be defined by 

the graph¶s edge weights between each image grid point and the s- (source) or t- 

(sink) node.  The latter is defined by the edge weights between 2 adjacent grid points. 

The theoretical framework to perform graph cut with Riemannian metrics was 

firstly presented by Boykov et al [6] based on integral geometry.  However, their 

original approach is for finding the minimal surface in a Riemannian space, without 

considering any apparent equivalent of the data term (aside from hard constraints for 

seed regions).  Therefore, we chose another, much simpler solution to modify the 

terms under the assumptions that: 

1) The weights of edges between adjacent image grid points have to be 

proportional to the intersectional area of their border (in the Riemannian space). 

2) The weights of edges to the s/t node have to be proportional to the volume of the 

space occupied by the grid point (again in the Riemannian space). 

The first assumption is derived from the fact that these weights compose the spatial 

coherency term, which minimizes the surface area.  The second assumption is 

determined in order to apply the same s/t weight to any unit volume. 

In determining the weights, there is a difficulty due to singularity of the distance 

map.  Our definition of metrics depends completely upon differentiability of the 

distance map.  However, it is not differentiable at any point which has multiple 

nearest points on the initial contour.  In our model, any singular point can be 

considered having infinite metrics, so that it has infinite volume (i.e., an infinite s/t-

edge weight).  Moreover, the finite difference approximation for the differentials is 

problematic near the singular points. 

To avoid this problem, we restrict the area of interest to a band-like 

region � � maxddist �x .  The constant dmax is determined as the maximal expected 

dislocation between the initial contour and the true contour to be segmented.  The 

restriction is performed as follows: 

1) Grid points close to any singular point, or singular-including points, are detected. 

2) All singular-including grid points are removed from the graph, as well as any 

grid points with � � maxddist tx .   

3) Grid points adjacent to singular (= adjacent to any singular-including point) 

have to be treated specifically: these grid points are considered to have finite 

µdepth¶ dmax towards the singular point (Fig. 2). 

At each grid points, the data term is multiplied by the volume occupied by the 

point in the Riemannian space.  Given the grid size is /, and the metric tensor at the 

grid center point is G, the volume occupied by the grid point can be approximated as 

Gdet3 � GV . 
(11) 

If the grid point is adjacent to singular, the occupied volume is considered as the 

volume within the proximal border of the grid and the border defined by the pre-

defined depth dmax.  It is simply approximated by multiplying the volume V by 

� �� �xdistd �max . 



The non-s/t edge weights are modified by multiplying the cross-sectional area A.  

A is approximated as follows: 
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where u1 and u2 are unit vectors perpendicular to the line segment connecting the two 

grid points and perpendicular to each other.  

 

Fig. 2. Schematic views of image grids, (left) in a rectified presentation of the Riemannian 

space, and (right) in the original image space.  The two painted boxes represent the areas 

occupied by two grid points.  The left grid point is referred to as adjacent to singular. 

2.3. Evaluation 

The method was evaluated on 220 human vertebral bones in 10 datasets of clinical 

computed tomography (CT) images.  The 1st and 2nd cervical vertebrae were 

excluded because of their unique shapes.  The vertebral bones were divided into 4 

groups: cervical, upper thoracic, lower thoracic and lumbar ones.  In each group, the 

mean shape was calculated and used as initial contour.  Before the proposed method 

was applied, each vertebra was cropped and rigidly registered in the same manner as 

described in [4].  Though 209 vertebrae were correctly identified and cropped by this 

full automatic process, 11 were failed and manually corrected in this study.  

Therefore, the following experiments were performed using these 220 pose-

compensated, cropped volume images of vertebrae.  The voxel size of 1×1×1 mm 
and dmax=24 mm were used in this study. 

The similarity index, Hausdorff distance and mean distance compared to the 

manual segmentation results were calculated for each vertebra.  The results were 

compared to a graph cut segmentation without Riemannian metrics.  Whenever 

possible, the parameters of the non-Riemannian version were set to the same values as 

the Riemannian graph cut version. 

The data term used in this study (before modified with metrics) is a binary function 

whose value is -1 and 1 within and out of the initial contour, respectively.  The 

spatial coherency term is a modified version of frequently used term introduced by 

Boykov et al. in [7].  In the modification only inward-positive image gradients are 

considered and outward-positive ones are regarded as 0 to detect outline of the bones. 



3 Experimental Results and Discussions 

The results of vertebral bone segmentation are shown in Table 1.  An example 

result is shown in Fig. 3. The results of the proposed method turned out to be superior 

to the conventional graph cut approach in all criteria and in all 4 vertebral groups.  

The overall mean distance error (±s. d.) of the proposed method and the conventional 

method was 1.28 ±0.65 mm and 3.76 ±2.67 mm, respectively. 

The result was comparable to another method reported by the authors [4] based on 

shape-intensity combined statistical models, in which the overall mean distance was 

1.28 ±1.52 mm.  It was also comparable to the study reported by Klinder et al. [8], in 

which the overall mean distance was 1.12 ±1.04 mm.  On the other hand, the 

proposed method was less precise in thoracic vertebrae, mainly due to incorrect 

segmentation of the region adjacent to the ribs.  For thoracic vertebrae, another study 

by Ma et al. [9] reported a better result with 0.95 ±0.91 mm of the mean distance. 

One of limitations of the proposed method is that the initial contour must be given 

in advance.  Therefore, it is possible that the method is less effective for targets with 

larger shape variation.  On the contrary, it might be especially effective for objects 

with less variable but more complex shapes (e.g., with many thin or protruding parts), 

because most of known segmentation methods are not good at segmenting such 

complex objects reliably. 

Table 1.  The segmentation results. (mean ± s.d.) 

Similarity index Cervical Upper th. Lower th. Lumbar 
with proposed metrics 0.77±0.03 0.79±0.06 0.86±0.03 0.87±0.04 
with Euclidean metrics 0.45±0.21 0.48±0.27 0.68±0.23 0.82±0.05 

 

Hausdorff dist. (mm) Cervical Upper th. Lower th. Lumbar 
with proposed metrics 9.03±2.15 17.10±7.71 11.13±5.61 11.80±4.26 
with Euclidean metrics 17.62±4.16 22.08±6.84 18.05±7.34 16.93±5.07 

 

Mean dist. (mm) Cervical Upper th. Lower th. Lumbar 
with proposed metrics 1.11±0.24 1.75±0.90 1.11±0.51 1.11±0.40 
with Euclidean metrics 4.16±2.00 4.90±3.1 3.53±2.89 2.14±1.01 

4 Conclusion 

An approach of graph cut segmentation based on a newly introduced Riemannian 

metrics was presented.  The experimental result suggested its advantage in 

segmenting thin, spine-like structures in which conventional graph cut methods are 

affected by the ³shrinking problem.´  Despite the simplicity of the approach, it 

achieves in some situations even comparable segmentation quality as more complex 

model-based methods.  In future work, we aim at integrating the Riemannian graph 

cut and model-based approaches in order to develop a more powerful and accurate 

segmentation scheme. 



    

Fig. 3. An example of segmentation result for a cervical vertebra.  (From left) The original 

grayscale image, rigidly-registered initial contour and two graph cut results with Euclidean and 

proposed metrics, respectively. 
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