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Abstract. In this paper we are concerned with robust structure-preser-
ving denoising filters for color images. We build on a recently proposed
transformation from the RGB color space to the space of symmetric
2× 2 matrices that has already been used to transfer morphological di-
lation and erosion concepts from matrix-valued data to color images.
We investigate the applicability of this framework to the construction of
color-valued median filters. Additionally, we introduce spatial adaptivity
into our approach by morphological amoebas that offer excellent capa-
bilities for structure-preserving filtering. Furthermore, we define color-
valued amoeba M-smoothers as a generalization of the median-based
concepts. Our experiments confirm that all these methods work well
with color images. They demonstrate the potential of our approach to
define color processing tools based on matrix field techniques.
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Thanks to modern technology, digital color images have become a ubiquitous
element of our every-day life, creating an ever-increasing demand for efficient
algorithms to process color image data. With noise being one of the most wide-
spread sources of image degradation, denoising is a crucial task of image process-
ing. Despite decades of research, it continues to pose new challenges, not least
due to the ongoing spread of imaging into new application fields with unfavorable



acquisition conditions with higher noise levels and an increasing diversity of noise
sources. For example, low-light photography by mobile phones combined with
compression for low-rate data transfer may lead to mixtures of significant sensor
noise with scattered light and compression noise. To cope with such application
contexts requires robust and structure-preserving denoising approaches. Whereas
the present work does not aim at giving a fully developed algorithm for a spe-
cific application problem, it intends to contribute to the development of robust
denoising algorithms. Our approach combines a suitable choice of color space
with multi-channel median filtering on adaptive neighborhoods. The median fil-
ter component is later generalized by so-called M-smoothers. In the following,
we therefore provide some background on these four concepts.

Color spaces. Since the output of most digital image sensors consists of red,
green, and blue intensity values, the corresponding RGB color space is often used
to perform color image processing. Targeting at the enhancement of images for
human observers, it makes sense, however, to adopt a color space that reflects
better the sensitivity and contrast perception of the human visual system. In the
latter, the excitations of retina cones, which are close to an RGB model, undergo
several transformation steps before they become color impressions, giving rise to
several color spaces that relate to different steps in this chain. From this realm,
the hue-chroma-luminance (HCL) lends itself as a good compromise for image
denoising because it is on one hand close enough to the RGB input and thereby
to the physical noise process, whilst at the same time it reflects reasonably the
perceptual metric of human color vision.

Color image processing is embedded in the context of multi-channel image
processing, which includes e.g. processing of tensor fields [11] as well. An in-
teresting link between the concepts developed there and color image processing
results from the structure of the HCL, HSV and similar color spaces. The latter
model the gamut of colors as a cone or bi-cone with a luminance or brightness
value as axial dimension. Likewise, symmetric positive definite matrices as are
used to represent diffusion tensors form a cone whose axial dimension represents
an overall intensity. In [4] this relation has been fruitfully exploited to transfer
multi-channel morphology concepts from tensor data to color image processing.

Median filtering. For gray-scale images, a time-proven method for robust
denoising is median filtering [10], which establishes a filtered image by assigning
to each pixel the median of gray values from the input image within a neigh-
borhood of that pixel. Neighborhoods for all pixels are generated by shifting a
fixed-shape mask across the image. The process can be iterated, by computing
a first filtered image from the input, a second filtered image from the first one,
and so on. This procedure can cope with heavy-tailed noise distributions such
as salt-and-pepper noise, whilst preserving important image features like edges
that are crucial for human interpretation of images.

Attempts to transfer median filtering to multi-channel contexts like color
images have therefore been made as early as 1990 [2]. The notion of vector
median introduced there selects as median of a finite set of vectors always one of
the input vectors. While this is advantageous in terms of algorithmic complexity,



it leads to discontinuous dependence of output data from input data, and applied
to color images, to noticeable color artifacts, as demonstrated in [8]. Indeed, a
median concept that drops the restriction to select one of the input values has
already been proposed several decades before by Weiszfeld [12]. Following these,
the median of data points in a metric space is the point in the same space that
minimizes the sum of distances to the input values. This notion of median has
been applied to color images in [8] via the RGB color space. The same approach
has been introduced to tensor field processing in [15].

Adaptive neighborhoods. For each pixel, the median filtering procedure
involves two steps: a sliding-window selection step, and the aggregation of se-
lected input values via the median. To increase the sensitivity to important
image structures, the selection step can be modified by using spatially adap-
tive neighborhoods. One representative of these are morphological amoebas as
introduced by Lerallut et al. [5], see also the further analysis in [14, 13]. In this
approach, spatial distance in the image plane is combined with contrast into
an image-adaptive metric. On the basis of this metric, adaptive neighborhoods
called amoebas are established and used to replace the sliding window in median
filtering in order to perform adaptive filtering.

M-Smoothers. Combining the sliding-window selection step with different
aggregation operators leads to other well-known image filters, such as average
filter (with aggregation by mean value), morphological dilation and erosion (with
maximum or minimum). A general class of position estimators for univariate
distributions are M-estimators, which include median and mean value as special
cases [7]. In combination with the sliding-window procedure they give rise to
image filters called M-smoothers [9].

Our contributions. In this paper, we combine the ideas reviewed in the
preceding paragraphs in several ways. First, we use the color-tensor link from
[4] to transfer the median filtering idea of [15] to color images and compare the
resulting version of a color median filter with the RGB-based approach from
[8]. This is further combined with the amoeba approach [5] for spatial adaptive
filtering to yield a color amoeba median filter with enhanced structure preserva-
tion. Second, we transfer the tensor-valued M-smoothers studied in [15] to color
images and combine them with the amoeba approach.

2 Color Images and Matrix Fields

In this section, we briefly recall the conversion of RGB-images to matrix fields
as introduced in [4]. Given an RGB-image we transform it in two steps into
a matrix field F of equal dimensions, i.e. we assign each pixel of the image a
symmetric 2× 2 matrix.

In the first step, we transform the color values of the image from the RGB
representation to the HCL color space. We assume that red, green and blue
intensities are normalized to [0, 1]. For a pixel with red, green and blue intensities
r, g, b, resp., we obtain its hue h, chroma c and luminance l via M = max{r, g, b},
m = min{r, g, b}, c = M −m, l = 1

2 (M +m), and h = 1
6 (g − b)/M modulo 1 if



M = r, h = 1
6 (b− r)/M + 1

3 if M = g, h = 1
6 (r − g)/M + 2

3 if M = b, compare

[1, Algorithm 8.6.3]. Replacing further the luminance l with l̃ := 2l − 1, and
interpreting c, 2πh, and l̃ as radial, angular and axial coordinates, resp., of a
cylindrical coordinate system, we have so far a bijection from the unit cube of
triples (r, g, b) onto a solid bi-cone, see Figure 1. Its base is the unit disc in the
plane l̃ = 0, while its tips correspond to l̃ = ±1 on the l̃-axis. The bi-cone is
then transformed from cylindrical to Cartesian coordinates via x = c cos(2πh),
y = c sin(2πh), z = l̃.

The second step takes the Cartesian

Fig. 1. Color bi-cone, figure adapted
from [3]

coordinate triples (x, y, z) and maps them
to symmetric matrices A ∈ Sym(2) via

A =

√
2

2

(
z − y x
x z + y

)
, (1)

compare [4]. Note that the mapping Ψ :
R3 → Sym(2) defined by (1) is bijective
and even an isometry from the Euclidean
space IR3 to the space Sym(2) with the
metric defined by the Frobenius norm ‖ · ‖F,
d(A,B) := ‖A−B‖F. Denoting by M⊂
Sym(2) the set of all matrices A which
correspond to points of the bi-cone, we
have therefore a bijection between the RGB
color space and the bi-coneM in Sym(2).
The inverse transform from matrices to RGB triples is obtained in a straightfor-
ward way, compare [4].

To illustrate the conversion of color values, we state RGB, Cartesian bi-cone
and symmetric matrix representations of exemplary colors in Table 1.

3 Constructing Amoebas

In this section, we explain how to construct an adaptive, pixel-wise varying
filtering domain, amoeba for short, for a given matrix field F. In doing this we

Color Black Red Green Blue
(r, g, b) (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1)

(x, y, z) (0, 0,−1) (1, 0, 0) (−1/2,
√
3/2, 0) (−1/2,−

√
3/2, 0)

A −
√
2

2

(
1 0
0 1

) √
2

2

(
0 1
1 0

)
−

1

4

(√
6
√
2√

2 −
√
6

)
−

1

4

(
−
√
6
√
2√

2
√
6

)
Color Yellow Magenta Cyan White
(r, g, b) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(x, y, z) (1/2,
√
3/2, 0) (1/2,−

√
3/2, 0) (−1, 0, 0) (0, 0, 1)

A
1

4

(
−
√
6
√
2√

2
√
6

)
1

4

(√
6
√
2√

2 −
√
6

)
−
√
2

2

(
0 1
1 0

) √
2

2

(
1 0
0 1

)
Table 1. Colors and their RGB, Cartesian bi-cone and matrix representations.



extend the approach of Lerallut et al. in a straightforward fashion: In [5], color
channels have been considered separately for amoeba construction.

Let (xi, yi) be the coordinates of the i-th pixel of an image with gray-value
fi. For a given pixel i0 with coordinates (xi0 , yi0) the amoeba is constructed as
follows. As a first step, we only consider pixels i∗ that are located in a prescribed
maximal Euclidean distance % of pixel i0 which limits the maximal size of the
amoeba. As a second step, we take these pre-selected pixels and consider paths
(i0, i1, . . . , ik ≡ i∗) which connect i0 with i∗ allowing only pixels that are neigh-
bors to enter P . We determine the shortest path P among all those possibilies
using the amoeba distance L(P ), a combination of spatial and tonal distances,
defined by

L(P ) =

k−1∑
m=0

1 + σ

k−1∑
m=0

∣∣fim+1
− fim

∣∣ , (2)

where σ > 0 is a given parameter that penalizes large deviations in gray-valued
data. If L(P ) ≤ % for P holds, then pixel i∗ is a member of the amoeba.

Because the amoeba distance includes a tonal dis-

Fig. 2. Masks centered at
marked pixels. Top. Spa-
tially fixed window. Bot-
tom. Amoeba domain.

tance, the amoeba has the ability to grow around
structures given by large tonal differences, compare
the sketches in Figure 2: A filter applied over fixed
masks takes into account all values as e.g. here both
white and gray region, while an amoeba may grow
around corners as indicated.

Note that modifications of this approach are pos-
sible and have been done by Welk et al. [14]. Precisely,
they considered 8-point instead of 4-point neighbors
as we do in this work, and different distance measures.
To efficiently implement the amoeba computation we
use the fast marching method similarly as in [13, 14].

Since we deal with matrix fields, we have to con-
sider an amoeba distance defined for matrices. A nat-
ural extension of (2) is

L(P ) =

k−1∑
m=0

1 + σ

k−1∑
m=0

∥∥Fim+1
− Fim

∥∥
F

(3)

where Fi is the symmetric matrix of size 2 × 2 at
the coordinate (xi, yi). Here, ‖· ‖F denotes the Frobe-
nius norm, which we employ in all computations. Of
course, also other norms like e.g. the nuclear norm [6,
p. 615] are possible, however, one should not employ different norm definitions
for amoeba distance and the filtering methods described in the following.



4 Median Filtering and its Generalizations

Given a color image, we first convert it to a matrix field as described in Section 2.
Then amoebas are constructed via the procedure given in Section 3 for all pixels.
For an amoeba as an adaptive structuring element, it is possible to extract the
matrices A1, . . . , An that participate in it.

Median Filters. The Frobenius matrix median M of this set of symmetric
2× 2 matrices is given by

M := medF(A1, . . . , An) := arg minX∈Sym(2)

n∑
i=1

‖X −Ai‖F (4)

compare for example [15]. Note that the matrices A1, . . . , An represent points
in a solid bi-cone defining a convex set. The resulting median is located in the
convex hull of this set and hence, the median operation never leads to RGB color
values outside the unit cube, see [15, Proposition 2]). To calculate the median
numerically one may reformulate the problem as a convex minimization problem;
compare [15, Section 3.2.1] for the reformulation and a discussion.

Given a matrix field F(0) := F, an amoeba median filter works now as follows.
For each matrix in the matrix field, one computes the amoeba, selects the set of
matrices A1, . . . , An, and computes the Frobenius matrix median. The resulting
matrix is stored in the matrix field F(1).

An iterated amoeba median filter (IAMF) applies this procedure iteratively p
times yielding matrix fields F(0), . . . ,F(p). At the end, the resulting matrix field
F(p) is converted back to a RGB image. In the subsequent section we report the
experimental results when this procedure is applied to various color test images.

M-smoothers. Next, we consider a generalization of the median filter that
can be traced back to Barral Souto [7] by modifying (4) as

Mp := arg minX∈Sym(2)

n∑
i=1

‖X −Ai‖pF (5)

where we assume p ≥ 1 to ensure uniqueness of the minimizer, cf. [13, pp.
20–21]). The symmetric matrix Mp is called a matrix-valued M-smoother. For
p = 1 we recover the median, for p = 2 we obtain the arithmetic mean, and
for the limiting case p → ∞ the mid-range. Using amoebas and calculating the
M-estimators iteratively leads to an iterated amoeba M-smoothers (IAMS).

5 Experiments

The structure of our experimental section is as follows. First we confirm that
the use of our new color scheme for both amoeba construction and filtering gives
better results than simpler amoeba-based methods employed in a similar style as
by Lerallut et al. [5] where experiments were designed to give a proof of concept.
Then we show an experiment demonstrating benefits of amoeba structuring el-
ements over fixed filtering masks. This is followed by a comparison of our new



set-up for median filtering with a recent method for median computation work-
ing with RGB data, namely the method of Spence and Fancourt [8]. Finally, we
present some results of our new amoeba-based M-smoothers.

Comparison with a simple amoeba-based median filter. The purpose
of this experiment is to demonstrate that the use of amoebas alone without a
proper median computation cannot give high-quality results.

To this end we take up a test image used in [5], see Figure 3. The image in
the middle is obtained by a simple, amoeba-based iterated median filtering. Here
the median is determined channel-wise in RGB, iterating three times amoeba
construction and median filtering analogously to IAMF. This is compared with
three iterations IAMF by our method, see the image on the right hand side.

Fig. 3. IAMF versus amoeba-based simple median computation, amoeba parameters
are % = 5 and σ = 5. Left. Input image, size 131× 173. Middle. Result for amoebas
and channel-wise median filter. Right. Result of IAMF with three iterations.

Our method yields reasonable colors after filtering, while the simple channel-
based median exhibits the expected problems of color distortions, e.g. have a look
at the left part of the nose or at green spots around the eyes and at the tran-
sition of hat to background. Let us also note that the expected edge-preserving
properties of the amoebas are clearly observable when using a proper median as
performed by our method.

Comparison of amoebas with fixed filtering masks. The purpose of this
experiment is to verify that the edge-preserving properties of median amoeba
filters that can be observed for gray-valued images [5, 13] are carried over to
filtering of color images. Because of the well-known difficulties in dealing with
color vectors we do not expect that this is self-evident.

In order to illuminate the mentioned effect we employ a low resolution test
image of size 64 × 64, see Figure 4. In the first row we demonstrate the edge-
preserving capability of the amoebas and show that our color scheme for median
filtering gives reasonable results. The shape of the peppers is well-preserved
while regions of similar color are more uniform after IAMF, in contrast to plain
median filtering which shows expected rounding effects of image structures. By



Fig. 4. Amoebas versus fixed filtering mask with iterated median filter. Left column.
Input images, original (top) and with added Gaussian noise in each channel (bottom).
Middle column. Iterated median filtering with our color scheme for 3× 3 masks and
three iterations. Right column. IAMF with σ = 5, % = 3 and three iterations.

the second row we demonstrate that our method is capable of delivering reason-
able shape information if the input is perturbed by noise. Note that the stipe
of the thin pepper is not well preserved in the filtering process. The filtering of
this kind of thin, oblique structures can be improved by using 8-neighborhoods
instead of 4-neighborhoods in the amoeba construction; however, we leave this
algorithmical improvement to future research. Note also that we employed % = 3
in this test instead of % = 5 in Fig. 3, since the resolution of the input image
in Fig. 4 is much lower and the parameter % controls the maximal size of the
structuring element.

Comparison to RGB-based color median approach. The aim of this
experiment is to show that our median filter based on our specific color represen-
tation yields competitive results compared to a RGB-based method for median
filtering, namely the approach of Spence and Fancourt [8].

The Figure 5 shows results for the Hamburg test image. We filter the image
with IAMF with parameters % = 5, σ = 5 and perform three iterations. Let us
note that in order to achieve directly comparable results, we adjust the parameter
σ by the factor

√
4/3 when using the method of Spence and Fancourt. This

factor can be derived by considering the distances between black and white
in RGB space and our color space, respectively. As can be expected from the
similarity of the methods, the results of our approach and that from [8] are
largely comparable.



Fig. 5. Comparison of IAMF with 5 iterations, % = 5, σ = 5, for different color median
filters. Left. Input image, size 213 × 213. Middle. Method of Spence and Fancourt.
Right. Our color scheme.

Iterated amoeba M-smoothers. For demonstrating the flexibility of our
framework we present in Figure 6 results for IAMS with several values for p, see
(5). The results show that image simplification can be achieved by our method
without color distortions. Results with fixed structuring elements are equally pos-
sible but not very illustrative here. We observe the expected increased smoothing
effect when letting p grow combined with the edge-preserving mechanism of the
amoebas.

Fig. 6. Matrix-valued M-smoothers with exponent p and 5 iterations. Left. IAMS
with p = 1 identical to IAMF. Middle. IAMS with p = 2, i.e. the image shows an
amoeba-based arithmetic mean. Right column. IAMS with p = 5.

6 Conclusion

In this paper we have extended the work from [3] on using matrix fields for the
processing of color images. We have introduced a color median filter concept
based on this approach and used it in connection with morphological amoe-



bas for robust, structure-preserving image denoising. We have also formulated a
more general filter class of color amoeba M-smoothers. Our experiments demon-
strate the viability and versatility of the approach. Ongoing work is directed
at generalizations to further image filters and applications for color image pro-
cessing. For future work we aim to make our algorithm more efficient and to
exploit theoretical connections of our approach to bilateral filtering and related
concepts.
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