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Abstract—Quantitative assessment of restoration quality in
blind deconvolution is not straightforward. The intricacy comes
from the opposite shifts occurring during image reconstruc-
tion in both the reconstructed image and point-spread func-
tion. State of the art procedures attempting alignment lack
specificity and might actually induce interpolation-based errors,
whereas alignment-free approaches disregard the possibility of
shift variability. Other methods introduce a superresolution-
based MSE/PSNR measure involving non-integer shifts. We
propose a method to estimate non-integer displacements between
the ground-truth image and the reconstructed image via the
Fourier domain, which enables at the same time to incorporate
interpolation-free shift compensation into the computation of
MSE/PSNR measures. We tested our method on synthetically
shifted images with additive noise as well as deconvolution
results with known shift. Results indicate that distortions of
error measures are reduced compared to interpolation-based
shift compensation methods, getting closer to a fair assessment
of restoration quality without wrongly favouring any blind
deconvolution method over another. It was observed that PSNR
measures corrected with estimated displacements are close to
those corrected with real displacements.

Keywords— blind image deblurring, image quality assessment,
restoration quality, shift estimation, Fourier method

I. INTRODUCTION

Deblurring images without prior knowledge about the blur kernel
is a recurrent problem for which a great variety of blind deconvolution
approaches have been investigated in the last decades [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [13], [16], [17], [22]. This creates the
need for reliable ways to assess and compare the restoration quality
achieved by different blind deconvolution methods. Besides visual
assessment, quantitative measures are highly demanded.

Assuming that the blur is spatially invariant, a common model of
the blurring process is a convolution between the unobserved sharp
image g and the point-spread function (PSF) h with additive noise
n. The observed blurred image f is then given by f = g ∗ h+ n.

Methods that aim at recovering the original sharp image from
the blur model are called deconvolution. We distinguish two types
of deconvolution problems: non-blind deconvolution assuming the
blurred image f and the PSF h are known and u (an approximation
of g) should be estimated. However, the knowledge of h is often not
available in practice, thus one requires blind deconvolution methods
where both u and h are to be estimated.

Restoration quality of non-blind deconvolution is often quantified
by pointwise error measures such as mean square error MSE or
average absolute error AAE as well as further measures derived
from MSE such as signal-to-noise ratio SNR and peak signal-to-
noise ratio PSNR. Another measure which is claimed to put more
emphasis on significant structural details like edges is the structural
similarity index (SSIM) [18].

Given a reference (ground-truth) image g and reconstructed image
u each of size n×m pixels, their MSE and PSNR are given by

MSE(g, u) =
1

nm

n−1�

i=0

m−1�

j=0

(gi,j − ui,j)
2 , (1)

PSNR(g, u) = 10 log10
R(g)2

var(g − u)
dB . (2)

Herein, the range R(g) and variance var(g) are given by

R(g) = max
i,j

gi,j −min
i,j

gi,j , (3)

var(g) =
1

nm

n−1�

i=0

m−1�

j=0

�
gi,j − µ(g)

�2 (4)

where µ(g) is the mean intensity of g. If µ(u) = µ(g), one has

PSNR(g, u) = 10 log10
R(g)2

MSE(g, u)
dB . (5)

Although these measures are the best established standard we have
so far for non-blind deconvolution, they are still limited and do often
not capture the visual quality of deblurred images very well.

Unfortunately, quality measurement for blind deconvolution suf-
fers from an additional complication: In blind deconvolution, the
restoration of image u and PSF h is only up to opposite but
otherwise unknown shifts. Thus, pointwise comparison methods such
as MSE, AAE, PSNR do not yield valid results unless combined
with additional steps to account for those displacements, i.e. some
kind of rigid registration restricted to translations.

If we assume u to be the reconstructed image of a ground-truth
image g using a blind deconvolution method, then u can possibly be
shifted by an arbitrary, often non-integer displacement d, where the
recovered point-spread function hu is translated by −d. By means of
convolution, these translations cancel each other, i.e. u∗hu is almost
equivalent to g ∗ h, if we ignore the additive noise. In Figure 1, we
show an example of such shifts in blind deconvolution results.

This means that any two blind deconvolution results that differ
just by opposite shifts of u and h must be considered equally valid.
Consequently, point-wise quality comparison methods MSE/PSNR
are precluded without prior adjustment.

Nonetheless, we witness through blind deconvolution literature
instances of PSNR-based comparison as well as other standard
quantitative measures without any alignment, e.g. [6], [7], [8], [9],
[10]. This can be valid only under the assumption that the recovered
PSF is aligned with the ground-truth PSF. Other studies showed shift
compensation efforts [7], [16], [21].

In [7] where superposition of copies of a sharp image shifted along
a curve is used to simulate camera-shake blur, it is proposed to avoid
alignment steps by constraining shifts to the camera-shake curve.
Restoration results are then compared against the translated ground-
truth images used in generating the synthetically blurred image, and
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Fig. 1: (a) Synthetically blurred image with ground-truth PSF,
from [11]. – (b) Blind deconvolution result with PSF, from
[13]. Note the opposite shifts of image and PSF.

the best match is used for the error measure. This, however, appears to
be an overly restrictive assumption since there is no reason for blind
deconvolution to yield only shifts that match the trajectory generating
the ground-truth PSF.

To measure absolute errors of the particularly aligned blur estimate
with regard to the ground truth, the work [16] based on [7] and
data from [9] takes into consideration unconstrained displacements,
although alignment details were not provided.

Specifying the alignment procedure comes with some choices to
make: which interpolation method to use in the registration process?
Should we register the reconstructed image to the ground truth or vice
versa? The work [20] evaluates the errors introduced by interpolation-
based alignment procedures with bilinear and bicubic interpolation.
It is demonstrated there that depending on the details chosen during
the alignment procedure, the PSNR measures can vary by 1.5 dB
and more. This is a fairly significant amount of uncertainty given
that in deconvolution literature often PSNR improvements of as little
as 0.5 dB are considered evidence of superiority of one method over
another, compare also [7], [16]. Comparisons of blind deconvolution
methods should therefore not be based on such procedures. As an at-
tempt to overcome these difficulties, [20] proposed a superresolution-
based error measurement procedure that can significantly reduce
the above mentioned alignment-induced variations in MSE/PSNR
values. This yields error margins closer to shift-free cases.

In a recent work [14], efforts were directed to measuring the
PSF reconstruction quality without the need to refer to a ground-
truth. They proposed to utilise inter-row and inter-column correla-
tion coefficients of the restored image to measure the quality of
the estimate. Using an iterative modified Richardson-Lucy-based
restoration [12], [15] algorithm, they refine the PSF estimate until
convergence is reached. The correlation measure is given by the
absolute difference between the rates of change of the inter-row
and inter-column correlation coefficients. If the required number
of iterations is reached, then the absolute difference almost stops
changing, under the condition that the blur kernel parameters are set
properly.

We are inspired by the same problematic as in [20], while focusing
on a scenario where the ground-truth image and the point-spread
function are available, and image restoration quality involves mea-
suring the error between the ground-truth and the deblurred image.

So, we aim in this paper to establish a shift estimation procedure
between the original image and the reconstructed image from a blind
deconvolution procedure.

This will allow us to use the standard quality assessment measures
like MSE/PSNR along with the correction of the displacement, thus
avoiding aligning induced errors, and forceful assumptions about the
trajectory of both reconstructed PSFs and ground truth.

Structure of the paper. In section II we will present our shift
estimation procedure, as well as the formulation steps. In section III,
we evaluate our approach by running several series of experiments on
synthetically shifted image test cases and non-blind deconvolution-
based synthetic test cases as well, then we observe and interpret the
available results. Section IV includes a conclusion and summary re-
volving around our experiments, observations and future aspirations.

II. FORMULATION OF THE SHIFT ESTIMATION

We consider g and h to be the ground-truth image and PSF, and
u and h to be respectively the recovered versions of g and h using
blind deconvolution. We regard v and hv to be different potential
approximates from the latter using the same blind deconvolution
method. Here, v and hv might be translated by arbitrary non-integer
opposite shifts Δx and −Δx as shown in

v(x) = u(x+Δx) , hv(x) = h(x−Δx) (6)
f(x) = (u ∗ h)(x) = (v ∗ hv)(x) (7)

Due to the Rayleigh/Parseval equality
�

|û|2 dω =

�
|u|2 dx , (8)

both displacement estimation and its compensation can be done in
the Fourier domain, which even simplifies computations. In fact,

v̂(ω) = û(ω)e−i�ω,Δx� , ĥv(ω) = ĥ(ω)e+i�ω,Δx� , (9)

f̂(ω) = û(ω)ĥ(ω) = v̂(ω)ĥv(ω) . (10)

This conveys that one must not punish a blind deconvolution method
for wrongly guessing the position. In other words, blind deconvolu-
tion results that differ just by such opposite translations of u and h
must be considered equally valid reconstructions.

In order to overcome these limits in quality measurement, we
propose to estimate the displacement Δx by considering the phase
discrepancy ϕ(ω) between û and v̂, which is given by

v̂(ω)

û(ω)
= e−iϕ(ω) , ϕ(ω) = arg

�
v̂(ω)

û(ω)

�
. (11)

where arg denotes the angular coordinate of a complex number in
polar representation. Motivated by (9), we aim at fitting a linear
function �ω,Δx� to ϕ to obtain Δx. Then we can correct the
displacement along with measuring the MSE and/or PSNR between
the ground truth u and the blind deconvolution result v via
� �

u(x)− v(x−Δx)
�2
dx =

� ��û(ω)− v̂(ω)e+i�ω,Δx���2dω .

(12)
For the linear function fit, we could in principle minimise

��
ϕ(ω)− �ω,Δx�

�2
. (13)

This is, however, insufficient as we have so far ignored the wrap-
around nature of phase factors of high frequencies. Therefore, we
weight contributions of different frequencies with a Gaussian function
of the frequency λ(ω). Initially the standard deviation is chosen to be
very small such that the fitting is essentially restricted to frequencies
close to the center for which no wrap-around is expected to take
place. Our energy function therefore reads

�
λ(ω)

�
ϕ(ω)− �ω,Δx�

�2
. (14)

Using the notations Δx = (Δx,Δy)T, ω = (ξ, η)T we take
derivatives of (14) with regard to Δx and Δy. Equating these to
zero yields a system of two linear equations for Δx and Δy:

�
λ(ω)ξ2Δx+

�
λ(ω)ξηΔy =

�
λ(ω)ϕ(ω)ξ , (15)

�
λ(ω)ξηΔx+

�
λ(ω)η2Δy =

�
λ(ω)ϕ(ω)η . (16)



Proceeding further, we must take into account the wrap-around of
the phase in the frequency domain. Given the estimate Δx, phase
unwrapping means to detect the discontinuities (2π jumps) in the
phase spectrum of ϕ(ω), i.e. to determine the integer multiples of
2π in agreement with the discontinuities at each frequency, and to
add them to the phase values ϕ(ω) at each frequency ω.

Samples ϕ(ω) should in fact be close to �ω,Δx� or off by
multiples of 2π, thus we iteratively updated Δx and Δy estimates
in order to correct ϕ(ω) and refine the estimation results.

In each iteration, we compute a residual phase function

ϕres(ω) = (ϕ(ω)− 2π�ω,Δx�) mod± 2π (17)

where mod± 2π indicates modulo-2π reduction to the interval
[−π,+π). An incremental update for Δx is then computed by
solving (15)–(16) with ϕres(ω) instead of ϕ(ω).

During the iterative refinement, the standard deviation of the Gaus-
sian weight function is successively increased so the contributions of
higher frequencies are gradually included in the refinement procedure.

In order to reduce the impact of generated boundary artifacts due to
the blind deconvolution process on the shift estimation, we preprocess
both the original image and its deblurred version by excluding
boundary adjacent areas using a trim-window in both directions x
and y of the image

ST1,T2(i, n) =





0, i ≤ T1 or i ≥ n− 1− T1

1, T2 ≤ i ≤ n− 1− T2

2(i−T1)
2

(T2−T1)2
, T1 < i ≤ T1+T2

2

1− 2(T2−i)2

(T2−T1)2
, T1+T2

2
< i < T2

2(n−1−T1−i)2

(T2−T1)2
, T1 ≤ n− 1− i ≤ T1+T2

2
2(i−n+1−T2)

2

(T2−T1)2
, T1+T2

2
≤ n− 1− i ≤ T2

(18)

where T1 and T2 are the window delimiters, with 0 < T1 < T2, n is
the size of the image in x or y direction and i is the pixel position.
The piecewise quadratic function ST1,T2 suppresses a region of width
T1 at the image boundaries. Within a wider margin of width T2, it
ensures a smooth transition to the unattenuated centre part of the
image. The smooth transition is chosen such as not to create spurious
sharp edges that would misguide the displacement estimation.

III. EXPERIMENTS ON SYNTHETIC DATA

1) Test cases with synthetic shifts: To test our approach for
shift estimation and correction we start by generating a fully synthetic
set of shifted images with various choices for the original image,
additive noise, additional boundary artifacts, and interpolation method
(bilinear, bicubic).

Since common displacements in blind deconvolution results usu-
ally do not exceed a 2 pixels limit (or larger displacements can
be reduced to this range by compensating their integer part with
interpolation-free block-moving of pixels), we focus on 20 random
values of the shift in the interval [0, 2]. To complement the picture, we
include a few more samples with larger shifts up to 10. Besides the
value of the displacement, test case generation as mentioned above
has four more inputs: the interpolation method, the choice of padding,
the noise, and the boundary artifacts, if added. To generate the test
cases we employ bilinear and bicubic interpolation with zero-padding
and Gaussian noise (σ = 20) and as well as increased Gaussian noise
(σ = 40) around the boundary to simulate boundary artifacts as they
are common in deconvolution results, see e.g. Figure 3 (d) later in this
paper. An example with bicubic interpolation is shown in Figure 2.

We use then our shift estimation approach to retrieve an approxi-
mation of the shift vector Δx for each image generated. In the shift
estimation it is important to suppress the influence of the boundary
region where large errors due to boundary conditions and boundary
artifacts are observed. To this end we apply the trim-window (18) with
T1 = 20 and T2 = 45. However, applying the trim-window to both
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Fig. 2: (a–c) Clippings of Barbara, Camera and Boat images.
– (d–f) Same images shifted by −9.75 in x direction and
−9.75 in y direction with zero-padding, Gaussian additive
noise (σ = 20) and simulated boundary artifacts (σ = 40).

the ground-truth and the shifted image in their original coordinates
introduces larger areas of mismatch along the window boundaries,
thus larger error contributions. Therefore we modify the windowing
procedure by using the initial estimate of the shift to adjust the
placement of the windowing function on both images. In particular,
We shift the window in (18) by Δx/2 for the original image, and
−Δx/2 for its shifted version. We call the modified trim-window
adaptive window.

An initial prediction of the shift prior to applying the adapted
window tends to improve the MSE/PSNR values along with the
new estimate, if used to adjust the window from (18). We then
experiment with iterating the shift estimation (Algorithm 1) and
adaptive windowing (Algorithm 2) as depicted in Algorithm 3 and
observe that at about 3 iterations the results become stationary, hence
the choice of the number of iterations 3. Note that nx and ny are
image sizes in x and y direction, respectively.

We tested as well a slightly modified variant of the overall
estimation procedure. We added another step prior to the iterative
windowing and estimation method (Algorithm 3), where we estimate
the shift and use its integer part for shift compensation. In other
words, we correct the integer displacement of the shifted image by
means of translation, see Algorithm 4, then we proceed to apply the
iterative windowing and estimation procedure between the original
image and the corrected shifted image. This leaves us with only the
fractional remaining displacement to estimate. We observe that this

Algorithm 1 Shift estimation function

Input: Original image u(nx, ny), shifted image v(nx, ny)
Output: Δx

1: Initialise Δx = 0
2: Apply 2D Fourier transform to u and v
3: Compute ϕ(ω) from û and v̂ using (11)

Shift estimation :
4: for i = 0 to 10 do
5: Compute λ(ω)
6: Update Δx by solving (15), (16)
7: end for
8: return Δx



additional step from Algorithm 4 leads to measurable improvement,
especially when it comes to shifts larger than 1.

To experiment with multiple instances of the same image with a
single shift and random noise, we create 10 instances of each test
case with identical parameters (shift, interpolation method, boundary
conditions, noise standard deviation, boundary artifacts) but different
random noise instantiation.

In Table I and Table II we display exemplary results for shifts
performed with bilinear and bicubic interpolation. For each shift and
test image, PSNR, Δx and Δy as reported in the tables are averages
of the values from the 10 random runs with the same parameters.

Algorithm 2 Windowing procedure

Input: Original image u(nx, ny), shifted image v(nx, ny),
T1, T2 and Δx

Output: Windowed original image uwd, windowed shifted
image vwd

1: Initialise uwd(nx, ny), vwd(nx, ny)
Windowing process:

2: for i = 0 to nx do
3: for j = 0 to ny do
4: Compute uwd(i, j) = u(i, j)ST1,T2

(i +Δx/2, nx)×
ST1,T2

(j +Δy/2, ny) using (18)
5: Compute vwd(i, j) = v(i, j)ST1,T2

(i−Δx/2, nx)×
ST1,T2(j −Δy/2, ny) using (18)

6: end for
7: end for
8: return uwd and vwd

Algorithm 3 Iterative windowing and estimation procedure

Input: Original image u(nx, ny), shifted image v(nx, ny),
T1, T2

Output: Δx, MSE and PSNR
1: Initialise Δx
2: for i = 0 to 3 do
3: Apply adaptive window using Algorithm 2
4: Estimate Δx using Algorithm 1
5: Update Δx
6: end for
7: Measure MSE with displacement correction using (12)
8: Compute PSNR from MSE using (5)
9: return Δx, MSE and PSNR

Algorithm 4 Integer shift compensation

Input: Original image u(nx, ny), shifted image v(nx, ny)
Output: Corrected shifted image vc(nx, ny)

1: Initialise Δx = 0, Δintx = 0 and vc(nx, ny)
2: Estimate Δx using Algorithm 1
3: Compute Δintx = �Δx+ 0.5�, Δinty = �Δy + 0.5�
4: for i = 0 to nx −Δintx do
5: for j = 0 to ny −Δinty do
6: Compute vc(i, j) = v(i+Δintx, j +Δinty)
7: end for
8: end for
9: return vc(nx, ny)

We present in Table I and Table II, respectively, the results yielded
by applying the first (Algorithm 3) and second (Algorithm 4 and
Algorithm 3) variants of the estimation procedure. Note that the
variables in Table II carry an additional “c” subscript indicating the
compensation of integer shifts by Algorithm 4. Let us further detail
the variables used in Table I and Table II: PSNRt and PSNRtc

are the PSNR results if true values of Δx and Δy were used in the
windowing process, instead of the previous estimates. They represent
the best results we can get, if we cheat in the windowing process.
PSNR3 (resp. PSNR3c), Δ3x (resp. Δ3cx) and Δ3y (resp. Δ3cy)
are the third iteration results.

We proceed to compare PSNR3 (resp. PSNR3c) values to the
reference PSNRt (resp. PSNRtc), and Δ3x (resp. Δ3cx) and Δ3y
(resp. Δ3cy) to the true values of Δx and Δy. Note that we used
T1 = 20 and T2 = 45 in our windowing process.

We observe that for small shifts, |Δx| , |Δy| < 1, both variants
of the proposed shift estimation procedure behave almost identi-
cally which is expected because the integer part of these shifts
is 0. We notice that the differences (|PSNR3 − PSNRt|) (resp.
(|PSNR3c − PSNRtc|)) do not exceed 0.5 dB when it comes to
bilinear interpolation test cases where |Δx|, |Δy| < 2. This is
a very important observation, since often superiority of one blind

TABLE I: Shift estimation and quality assessment PSNR
results from Algorithm 3

(Δx, Δy) Image PSNR3 PSNRt Δ3x Δ3y

Bilinear Interpolation

(−0.125,−0.25)
Barbara 32.1395 31.8633 −0.100 −0.216

Cameraman 31.8314 31.6190 −0.099 −0.216
Boat 33.2252 33.1883 −0.118 −0.239

(−0.333,−0.879)
Barbara 29.3757 29.2398 −0.300 −0.875

Cameraman 30.3220 30.1983 −0.300 −0.885
Boat 31.9868 31.9601 −0.323 −0.872

(−0.5,−0.5)
Barbara 28.1160 28.1224 −0.489 −0.489

Cameraman 28.6100 28.6140 −0.489 −0.490
Boat 31.2281 31.2297 −0.493 −0.492

(−1.75,−0.4)
Barbara 29.6592 29.6837 −1.750 −0.380

Cameraman 29.7614 29.7339 −1.752 −0.375
Boat 32.0108 32.0914 −1.731 −0.392

(−9.3,−8.25)
Barbara 26.1328 29.1226 −8.993 −7.944

Cameraman 27.3287 29.7921 −9.000 −7.974
Boat 31.8375 31.9687 −9.159 −8.123

(−7.89,−9.3)
Barbara 25.8910 32.5645 −7.666 −8.952

Cameraman 27.7239 31.4007 −7.695 −9.013
Boat 32.1943 33.2129 −7.782 −9.1587

Bicubic Interpolation

(−0.125,−0.25)
Barbara 33.8990 33.3827 −0.097 −0.218

Cameraman 33.4158 33.0222 −0.100 −0.214
Boat 33.8225 33.7564 −0.115 −0.241

(−0.333,−0.879)
Barbara 31.8278 30.5615 −0.223 −0.878

Cameraman 32.2144 31.0294 −0.244 −0.887
Boat 33.0585 32.3990 −0.233 −0.872

(−0.5,−0.5)
Barbara 30.4804 30.4668 −0.455 −0.486

Cameraman 30.2610 30.2275 −0.454 −0.488
Boat 32.0865 32.0871 −0.438 −0.490

(−1.75,−0.4)
Barbara 30.6803 31.3548 −1.705 −0.359

Cameraman 30.7272 30.9268 −1.708 −0.357
Boat 31.8863 32.6319 −1.645 −0.386

(−9.3,−8.25)
Barbara 26.6331 31.6411 −8.998 −7.951

Cameraman 28.0663 31.6509 −9.005 −7.980
Boat 32.8439 32.9200 −9.158 −8.124

(−7.89,−9.3)
Barbara 25.9627 33.1208 −7.672 −8.972

Cameraman 27.6577 32.4346 −7.671 −8.995
Boat 31.7654 33.5790 −7.724 −9.155



deconvolution methods over another is claimed based on as little as
0.5 dB of improvement in literature [7], [16]. However, we witness
rare cases of a moderately larger margin up to 1.2676 for bicubic
interpolation-based data. In some cases, PSNR3 (resp. PSNR3c)
values slightly exceed PSNRt (resp. PSNRtc). This is most probably
caused by the influence of the noise especially when the shift is small.
Moreover, when it comes to slightly larger shifts (1 up to 2), we
observe the first manifestations of a rather larger gap between PSNR3

and PSNR3c. For even larger shifts like (−7.89,−9.3) in Table I
and Table II, e.g. for the Barbara image, the PSNR3 value reaches
a low 25.9627 dB, furthermore, the differences (PSNR3 −PSNRt)
stretch to as much as 7.1581 dB. Meanwhile, PSNR3c is a healthy
32.6542 dB with (PSNR3c − PSNRtc) = 0.28 dB.

These results demonstrate that the second variant of the proposed
shifted estimation procedure outperforms the first one. Besides, we
notice for the second algorithm variant results in Table II, whether
the shift is small or large, that (PSNR3c−PSNRtc) is below 0.5 dB
almost consistently for bilinear interpolation-based data while it
exceeds 1 dB for bicubic interpolation-based data in rare cases. These
outcomes are still faithful to our purpose: a fair quality assessment
between two given blind deconvolution methods.

TABLE II: Shift estimation and quality assessment PSNR
results after integer shift compensation 4

(Δx, Δy) Image PSNR3c PSNRtc Δ3cx Δ3cy

Bilinear Interpolation

(−0.125,−0.25)
Barbara 32.1765 32.1395 −0.100 −0.216

Cameraman 31.8314 31.6160 −0.099 −0.216
Boat 33.2252 33.1883 −0.118 −0.239

(−0.333,−0.879)
Barbara 29.3717 29.2452 −0.299 −0.900

Cameraman 30.3421 30.2066 −0.300 −0.900
Boat 31.9931 31.9592 −0.323 −0.885

(−0.5,−0.5)
Barbara 28.1160 28.1220 −0.489 −0.489

Cameraman 28.6100 28.6184 −0.489 −0.498
Boat 31.2272 31.2282 −0.505 −0.498

(−1.75,−0.4)
Barbara 29.8718 29.6998 −1.780 −0.375

Cameraman 29.8780 29.7316 −1.785 −0.374
Boat 32.1283 32.0897 −1.759 −0.392

(−9.3,−8.25)
Barbara 29.4723 29.2704 −9.266 −8.218

Cameraman 29.8178 29.8442 −9.266 −8.214
Boat 31.9808 31.9550 −9.290 −8.241

(−7.89,−9.3)
Barbara 32.1744 32.2020 −7.913 −9.269

Cameraman 31.3882 31.4680 −7.914 −9.268
Boat 33.2178 33.2055 −7.897 −9.287

Bicubic Interpolation

(−0.125,−0.25)
Barbara 33.8990 33.3827 −0.097 −0.218

Cameraman 33.4158 33.0222 −0.100 −0.214
Boat 33.8225 33.7564 −0.115 −0.241

(−0.333,−0.879)
Barbara 31.8309 30.5633 −0.222 −0.898

Cameraman 32.2646 31.0368 −0.223 −0.904
Boat 33.0750 32.3981 −0.232 −0.887

(−0.5,−0.5)
Barbara 30.4804 30.4668 −0.455 −0.486

Cameraman 30.2601 30.2315 −0.453 −0.495
Boat 32.0861 32.0870 −0.438 −0.492

(−1.75,−0.4)
Barbara 31.1714 31.3744 −1.738 −0.356

Cameraman 30.9923 30.9243 −1.740 −0.357
Boat 32.1488 32.6300 −1.674 −0.386

(−9.3,−8.25)
Barbara 31.9840 31.7102 −9.2637 −8.213

Cameraman 31.8275 31.6964 −9.264 −8.215
Boat 32.9708 32.9051 −9.287 −8.240

(−7.89,−9.3)
Barbara 32.8794 33.1594 −7.890 −9.250

Cameraman 32.4656 32.4855 −7.888 −9.249
Boat 33.2496 33.5695 −7.840 −9.284

a b

c d

Fig. 3: (a) Ground truth image, 128 × 128 pixels. (Clipped,
downscaled and converted to greyscale from a photograph
of the building of TU Vienna. Source of original image:
https://upload.wikimedia.org/wikipedia/commons/e/e9/TU Bib
l 01 DSC1099w.jpg, Author: Peter Haas. Available under
licence CC BY-SA 3.0.) – (b) 16 PSFs, 10× 10 pixels each,
subsampled from the same high-resolution input. The shift
from row to row and from column to column is 0.25 pixels. –
(c) Image (a) blurred by convolution with PSF from (b), first
row, second column. – Bottom right: Image (c) deblurred
with PSF from fourth row, third column, resulting in a shift
relative to ground truth of (0.25, 0.75) pixels. This figure is
reproduced from [20].

2) Experiments on deconvolution results: To bring the pre-
vious procedure closer to a true blind deconvolution context, we
experiment with non-blind deconvolution results using data from
[20] as displayed in the example Figure 3. In [20], a total of 256
test case images were created based on the ground truth image in
Figure 3 (a) by blurring this image with 16 different PSFs shown
in Figure 3 (b). All these PSFs are downsampled versions of the
same high-resolution PSF with horizontal and vertical shifts in 1/4
pixel steps. Afterwards, the non-blind deconvolution method from
[19] with the same parameters (α = 0.01, iterations = 300) was
used to deconvolve each of the 16 blurred images, e.g. Figure 3 (c),
with each of the 16 PSFs. This yields 256 deblurred images shifted
from the ground truth by displacements ranging from −0.75 to 0.75
pixels in x and y direction; Figure 3 (d) is an exemplary deblurred
image. We used the same procedure to generate 256 deblurred images
from each of the Barbara, camera man and boat images as well.
Since we are working with shifts ranging between −0.75 and 0.75,
applying and displaying the results of the first variant of the proposed
shift estimation method (Algorithm 3) is sufficient for the purpose
of this paper. To reduce the impact of boundary artifacts, we apply
the trim-window (18) with T1 = 20 and T2 = 35 for the Owl image
and T1 = 20 and T2 = 40 for all three of Barbara, Camera man



and Boat images. Table III exhibits some examples from the 256
PNSR and shift values resulting from both our Fourier-based shift
estimation method and the superresolution alignment procedure from
[20]. It contains the variables PSNRt, PSNR3 as well as Δ3x and
Δ3y, where PSNRt represents the PSNR results when true Δx
and Δy are used in Algorithm 2, and PSNR3/Δ3x are the third
iteration results from Algorithm 3. As in the previous experiment,
we want to compare PSNRt and PSNR3. We observe in Table III
that the differences (|PSNR3 −PSNRt|) do not surpass 0.5 dB for

TABLE III: Shift estimates and quality assessment PSNR
results from Algorithm 3 and superresolution alignment [20]
using images generated by non-blind deconvolution

(Δx, Δy) Image PSNR3 PSNRt Δ3x Δ3y

Our Fourier-based shift estimation

(0, 0)

Barbara 27.1677 27.1740 0.017 0.000
Cameraman 32.9230 32.9228 0.001 0.001

Boat 32.9666 32.9731 −0.008 0.002
Owl 31.0764 31.0904 −0.015 −0.010

(0,−0.75)

Barbara 26.0540 26.0491 0.019 −0.749
Cameraman 31.3022 31.2928 0.009 −0.748

Boat 32.2486 32.2270 0.048 −0.755
Owl 30.2572 30.2431 −0.000 −0.772

(0.25, 0.5)

Barbara 26.3325 26.3381 0.262 0.491
Cameraman 30.5055 30.4723 0.235 0.490

Boat 32.0737 32.0932 0.195 0.486
Owl 29.9410 29.9805 0.198 0.516

(−0.25,−0.25)

Barbara 26.2351 26.2357 −0.249 −0.237
Cameraman 30.3617 30.3412 −0.246 −0.235

Boat 32.0330 32.0380 −0.253 −0.233
Owl 29.8897 29.8687 −0.227 −0.192

(−0.75,−0.25)

Barbara 26.5112 26.5138 −0.744 −0.239
Cameraman 30.8111 30.6877 −0.767 −0.229

Boat 32.1812 32.2046 −0.735 −0.233
Owl 30.2255 30.1774 −0.812 −0.174

(0.75, 0.75)

Barbara 26.7639 26.7480 0.771 0.745
Cameraman 30.9633 30.7849 0.779 0.752

Boat 32.3013 32.3470 0.737 0.750
Owl 30.4082 30.3340 0.786 0.756

Superresolution alignment with innocence assumption as in [20]

(0, 0)

Barbara 32.4010 32.4010 0.000 0.000
Cameraman 38.2900 38.2900 0.000 0.000

Boat 38.5820 38.5820 0.000 0.000
Owl 36.0710 36.0710 0.000 0.000

(0,−0.75)

Barbara 37.0120 32.1890 0.300 −1.000
Cameraman 39.3110 39.0820 0.000 −0.700

Boat 39.3160 39.1680 0.000 −0.700
Owl 36.8640 36.6930 0.000 −0.700

(0.25, 0.5)

Barbara 39.4120 37.8420 0.350 0.450
Cameraman 43.0290 43.0290 0.250 0.500

Boat 44.3030 43.7340 0.300 0.500
Owl 40.5940 33.6540 0.300 0.500

(−0.25,−0.25)

Barbara 39.0770 37.4580 −0.350 −0.250
Cameraman 42.3440 41.7680 −0.300 −0.250

Boat 43.8210 43.0960 −0.300 −0.300
Owl 40.3910 39.7560 −0.300 −0.300

(−0.75,−0.25)

Barbara 39.4530 37.6440 −0.650 −0.350
Cameraman 42.4840 42.4840 −0.750 −0.250

Boat 44.0990 43.3570 −0.700 −0.300
Owl 40.7790 40.0870 −0.700 −0.300

(0.75, 0.75)

Barbara 39.4500 37.8360 0.650 0.750
Cameraman 42.7650 42.7650 0.750 0.750

Boat 44.4280 43.7160 0.700 0.700
Owl 40.4800 40.3470 0.750 0.700

our shift estimation method. As can be expected, the last two columns
of Table III indicate, as good as the estimate can get, that there is
still room for improvement regarding Δx (resp. PNSR) for both
methods. The average PSNR3 value across all 256 test cases for our
shift estimation is 30.0639 with a standard deviation of 0.3376 and
40, 1981 for the superresolution alignment procedure with 0.236 as
standard deviation. Comparing with the more complicated procedure
proposed in [20], it is evident that the variation of the measurement
is slightly larger. However, the Fourier-based method described in the
present contribution has the advantage that displacement estimation
and error measurement are achieved in a joint and fairly efficient
procedure.

In contrast, in [20] a costly superresolution procedure was used for
error measurement, which was repeated in a brute force grid search
for displacement estimation. This procedure is slow and subject to
numerous parameters. Even with substantial regularisation, it tends to
hide some errors in oscillatory over-fitting artifacts. We experimented
with the method in [20] with α = 0.3, β = 0.03 and µ = 1.
Remarkably, large differences between PSNRt and PSNR3 again
occur for the Barbara example, likely caused by the abundance of
higher frequency structures in the image.

We are optimistic that further refinements based on our present
contribution will allow to reduce the variation of error measurement
depending on the displacement.

IV. CONCLUSION

In this paper, we established a shift estimation procedure between
a ground truth and a shifted image. This shift is then compensated
in the MSE measures. As formerly stated in the section I, blind
deconvolution restoration of an image u and PSF h is up to un-
known non-integer opposite shifts. Therefore, comparison of blind
deconvolution methods should not rely on pointwise measures such
as MSE or PSNR without performing a prior alignment – rigid
registration restricted to translations. The method from section II
implements this alignment step in an interpolation-free way which
allows further the use of pointwise standard quality assessment
measures like MSE/PSNR with blind deconvolution.

Tests on synthetically generated image pairs with known displace-
ments confirmed that shifts could be recovered with good precision
and error measurements (PSNR) with the recovered shifts were rea-
sonably close to those obtained with the ground truth displacements.

A further test series was based on test data from [20]. These
test cases consisted of non-blind deconvolution results designed to
mimic blind deconvolution settings but with full control over the
displacements between ground truth and reconstructed images. We
also displayed results of experiments with superresolution alignment.
We point out that despite the strong overlap in the problem statement
with [20], our approach is entirely different. While both methods give
decent shift estimates and improved PSNR values, there is a slight
improvement with Fourier-based shift estimation when it comes to
lesser likelihood to over-fitting errors, and a substantial reduction
in parameters. For Fourier-based shift estimation, results were in
agreement with the findings from the first series of experiments.
More importantly, the second experimental setup allowed to assess
the variability of error measurements for deconvolution results with
identical method and parameters dependent on the displacement.
Although we have not fully eliminated that variability, we reduced it
to a similar extent as the method from [20], but at less computational
effort.

Since insensitivity to random shifts is crucial for the reliability of
the method as quality measurement for actual blind deconvolution
results, the experiments presented in this paper mark a step closer to
a fair quality measure for blind deconvolution.

Future work will be directed at continued refinement of our
combined shift estimation and compensation approach. In the further
course, it will be used for systematic state of the art blind deconvo-
lution methods.
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