
Automated Quality Inspection of Microfluidic
Chips Using Morphologic Techniques

Thomas Schwarzbauer1,2, Martin Welk2, and Chris Mayrhofer1 and Rainer
Schubert2

1 Sony DADC Austria, Sonystrasse 20, 5081 Anif/Salzburg, Austria
{thomas.schwarzbauer, chris.mayrhofer}@sonydadc.com

2 University for Health Sciences, Medical Informatics and Technology (UMIT),
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Abstract. We apply morphological image processing for quality inspec-
tion of microfluidic chips. Based on a comparison of measured topogra-
phies with design data, we provide a coherent solution to four central
tasks in the quality assessment of injection moulded polymer devices:
determination of channel depth, identification of burrs, calculation of
transcription accuracy, and detection of defective regions. Experimental
comparison to manual quality inspection procedures demonstrates the
good performance of the proposed automated method, and reveals its
clear advantages in terms of objectivity and reliability.

1 Introduction
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Visual quality inspection of industrial products has been an important appli-
cation field for image processing from its beginnings, see e.g. [15, 24]. Manual
quality inspection by humans faces numerous problems [14]. For example, hu-
man experts require training and their skills take a lot of time to develop. Even
between well-trained individuals, results tend to be observer-dependent. Fur-
thermore, the inspection task can be tedious and difficult. As [15] points out,
this conventional kind of quality control is not only slow and costly, but also
leads to high scrap rates and does not assure high quality.

In many mass production manufacturing facilities the actual goal is a 100 %
quality assurance [15] which is often unfeasible in a manual inspection setting.
Hence, there is an ever-increasing demand for automated visual quality inspec-
tion.

In this paper, we are concerned with the development of methods for semi-
automated quality inspection of microfluidic chips. Being used e.g. for in-vitro
diagnostics, life sciences research and medical technology, these chips constitute
a rapidly growing market. A microfluidic chip is a polymer plate incorporating
channels and filters through which liquid or emulsions can propagate and are
led to well-defined compartments where reactions can take place. Channel cross-
sections typically measure some tens of micrometers, while filter structures go
down to few micrometers in size. For an example, see Fig. 1.
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Fig. 1. Detail from a microfluidic chip (de-
sign data) featuring channel and filter struc-
tures. Grey-values represent depth values on
a scale that spreads about 60µm.

A typical production process involves injection moulding of a half-product
plate with open channels and filter structures embossed in its surface, which is
afterwards covered by an unstructured even plate. The inspection of the half-
product surface is in the focus of our work.

Quality requirements for these products are extremely high due to the fact
that they are often used for the processing of unique and sensitive probes. It is
of utmost importance to ensure that no probes are wasted due to malfunctions
of the chip, and that results of analysis have a high degree of reliability. As a
consequence, a thorough quality inspection – ideally, a 100 % quality check –
is crucial. At the same time, in order to keep scrap rates low, chips should be
discarded only if they feature defects which indeed impair the function of the
appliance.

Reviewing quality inspection of surfaces across industries, [24] classifies in-
spection methods with regard to the underlying features: statistical, structural,
filter-based and model-based.

Statistical approaches [24] utilize the spatial distribution of intensity values
in images. A variety of statistical features are available and applied in litera-
ture for visual inspection. These techniques comprise approaches like histogram
statistics, e.g. Ng [16] using global thresholding by Otsu [18], co-occurrence ma-
trices, e.g. Asha et al. [1], Novak and Hocenski [17], as well as registration-based
techniques, e.g. Chiou and Zhang [2], Tait et al. [20], Ibrahim et al. [8] and Leta
et al. [9].

Structural approaches [24] use texture primitives and their spatial arrange-
ment to analyze images [22]. Apart from primitive measurement, edge features
and skeleton representation, also morphological operations are widely used for
quality inspection purposes [24]. Elbehiery et al. [4] applied morphological tech-
niques for ceramic tile inspection. Different defects, like chips, cracks or scratches
can be detected by applying the proposed approaches, which are all sequences
of different image processing techniques, like edge detection, noise reduction and
morphology operations. To improve the capability of a morphological approach,
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Zheng et al. [26] tried to identify defects on aluminum surfaces by applying ge-
netic algorithms in order to estimate the optimal morphological parameters, a
segmentation threshold and a noise reduction threshold. Structural approaches
based on morphology are also applied in steel quality inspection by Wiltschi et
al. [23].

Filter-based techniques [24] are characterized by the application of filter
banks and the computation of the energy of the filter responses. Methods in this
category can be divided into techniques applied in spatial domain, frequency
domain and joint spatial-frequency domain. Gabor filters were applied by Tsai
et al. [21] to detect defects on tile, wood and fabric surfaces. A similar approach
was proposed by Lin et al. [11]. They identified defects on optical lenses.

Model-based approaches [24] comprise fractal models [12], random field mod-
els [10] or texem models [25].

Our contribution. We describe a system for the inspection of the surface quality
of microfluidic chips. It is based on the comparison of topographic data ob-
tained by confocal microscopy to a reference dataset derived from the design
model. With a registration step as preprocessing, morphological techniques in
combination with segmentation steps provide the core functionality of defect
detection, which is in the focus of the present paper. Morphological operations
serve as an efficient tool e.g. for noise reduction, recognition of structures and
elimination of biasing areas.

Relying on well-established image processing techniques, the contribution of
this work is to combine these methodologies into a coherent concept that goes
all the way down from the specification of the particular quality inspection task
to a practically usable solution.

2 Prerequisites

2.1 Data Acquisition and Problem Statement

In order to assess the conformity of the chip under inspection with its design,
the chip is imaged by a confocal microscope at a resolution around 1µm. This
resolution is necessary in order to resolve the finest filter structures on the chip.
From the measured data, a topographic map of the chip surface is created. This
depth map can be treated as a 2D greyscale image. By design, channel and filter
structures on the chip occur in a few discrete depth steps – besides the overall
surface level, typically two to three different depth levels are involved.

Given the high resolution, measurement of the entire chip surface is precluded
by both storage demand and measurement time. For this reason, the process is
applied to regions of interest where critical channel and filter structures are
located.

The processing is done by a combination of statistical and structural meth-
ods. In order to enable comparison between measured data and the design
dataset, both images will have to be aligned. This task is known in image pro-
cessing as image registration.
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Using mainly morphological techniques, the depth map data is then evaluated
with regard to several predefined quality criteria. Characteristics like channel
depth, accuracy of transcription, and burr are of central interest here. Accuracy
of transcription is meant to describe particularly how well filter structures are
moulded. Filters typically consist of arrays of pillars, and it is important that
these columns reach the overall surface level in order to get in touch with the
closing plate. So the main criterion of transcription is the height of the columns.
Burrs are raised regions adjacent to channel edges caused by material accu-
mulations after injection moulding. A special challenge here is to discriminate
between real burrs and artifacts of the confocal microscope scanning procedure.
Transcription accuracy and burrs are indicators for possible functional problems
of the chip.

Morphological techniques lend themselves as an excellent tool for the eval-
uation step because they do not only provide direct solutions to most of the
shape processing tasks that occur herein, but also because of their simplicity
and speed, which is crucial in view of the large amounts of data that need to
be processed. Due to the layered design of the chips, set-valued morphological
operations are suitable for our purposes.

2.2 Image Registration

Image registration denotes the task to establish a spatial transformation between
the domains of two images by which corresponding points in both images are
taken to the same locations. [5] For this to make sense it is understood that both
images represent the same scene and differ by time of capture, viewpoint, and/or
image modality [27]. Registration problems occur in multiple variations differing
e.g. by dimensionality, registration basis, the realm of admissible transforma-
tions; registration algorithms differ further in their optimization procedures, and
degree of interactivity [13].

In terms of these criteria, the registration problem we face can be described
as 2D/2D because the depth dimension in both datasets is treated as (grey-)
value. The transformation can be assumed as rigid because the main source of
misalignment is the positioning of the probe under the confocal microscope which
may be shifted, rotated and tilted, while it is not expected that deformations
like shearing or bending of the chip itself as compared to its design model will be
large enough to be observable as nonrigid within a region of interest as handled
in the registration step. Furthermore, our registration problem is global (with
regard to the region of interest), and automatic.

Image registration is nowadays a well-studied problem, and algorithms for a
large variety of settings are available.

2.3 Morphology

Once the datasets are aligned, our further processing uses the standard opera-
tions of set-valued morphology, see e.g. [6], namely erosion 	, dilation ⊕, opening
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◦ and morphological gradient %B with a structure element B as given by

A	B = {z ∈ E | Bz ⊆ A} , (1)

A⊕B = {z ∈ E | Bz ∩A 6= 0} , (2)

A ◦B = (A	B)⊕B , (3)

%B(A) = (A⊕B) \ (A	B) , (4)

where Bz denotes the translate of B to the location z.

2.4 Otsu Segmentation

Otsu segmentation [18] is a threshold-based segmentation method with auto-
matic adaptation of thresholds to the image histogram. In the simplest case
of a two-class (e.g. foreground-background) segmentation, a single threshold is
chosen such that the ratio σ2

inter/σ
2
within of the variance σ2

inter between classes
and the variance σ2

within within classes becomes maximal. Given the histogram,
the threshold can be computed by an exhaustive search. The method is easily
extended to more than two classes by selecting two or more thresholds; how-
ever, the cost of exhaustive search increases exponentially with the number of
thresholds.

3 Methodology

In the registration step, the design depth-map is kept fixed, and the measured
dataset is subject to a rigid transformation. This distribution of roles ensures
that structures to be analysed later on are always found at the same positions.
The transformation is determined such as to minimize the L2-distance [3] of the
gradient magnitudes between the fixed and transformed images. To this end, we
apply a rigid multiresolution approach, see e.g. [5]. It is important here to work
with gradients since absolute grey-values – i.e. depths – are affected by slight
tilts of the chip caused by bending of the chip, or of the injection moulding mask.
Another reason is that the chip can lie askew during the image acquisition due
to dust particles on the locating surface. In order to remove this phenomenon
from the raw data, the upper surface has to be estimated and subtracted using
least squares plane fit [7].

Afterwards, the quality of the chip can be assessed by determining channel
depths, identifying burrs, calculating transcription and detecting defects.

3.1 Determination of Channel Depth

The algorithm for determining the global mean channel depth is roughly divided
into three steps. The results of the steps are depicted in Fig. 2.

In a first step, the different layers have to be identified. To this end, Otsu
segmentation is applied to the corresponding region in the reference image. This
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Fig. 2. The results of the intermediate steps of calculating the mean channel depth.
Left to right: (a) Raw image – (b) Segmentation of upper surface – (c) Segmentation
of channel layer – (d) Erosion of (b) – (e) Erosion of (c).

results in two or three segments depending on the present number of different
layers.

Secondly, in order to remove unwanted areas, which are likely to contain
burrs as well as measurement artefacts, morphological erosion is applied to the
different segments. Otherwise, these areas would have a negative influence on
the calculation and would distort the achieved results. Also small overlapping
errors that may be caused by a possibly insufficient registration accuracy are
eliminated.

Finally, the mean values ri and the variances σ2
i of all regions in the sensed

image, which correspond to the eroded segments derived from the reference im-
age, are calculated. Thus, the mean channel depths di are calculated as the
absolute difference between the mean value of the eroded upper surface and the
mean values of the respective channel layers.

3.2 Identification of Burrs

The recognition of high burrs is realized by the application of several image
processing techniques. The algorithm basically consists of three processing steps.
The results of the subsequent steps are shown in Fig. 3.

In an initial step, regions have to be identified that are likely to contain
burrs. Thus, regions near channel boundaries have to be selected. In contrast,
regions on filter columns are not of interest. In order to remove them from
analysis, a combination of Otsu segmentation, morphological erosion and region-
growing segmentation is employed. The first segmentation step identifies the
upper surface, which also contains filter columns. By choosing an appropriate
size of the structure element, the applied morphological erosion entirely removes
the pillars. As this erosion also moves the channel boundaries, the latter are
reconstructed by a subsequent region-growing segmentation with the erosion
result as seed points. After this “opening by reconstruction” procedure, the full
upper surface without filter columns is available.

Secondly, in order to isolate regions that are likely to contain burrs, a morpho-
logical gradient (difference of dilation and erosion) is applied to the segmented
upper surface. As a result, the potential burr regions are isolated. Dilation is
applied to discard the effects of small misalignments caused by inaccuracies of
the registration process.
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Fig. 3. Results of essential steps in the identification of high burrs. Left to right: (a)
Raw image – (b) Segmentation of the upper surface – (c) Morphological gradient –
(d) Identified burr.

Finally, in order to find high burrs, the identified regions are examined. Burr
is signalled at those locations i where the measured height value zi exceeds the
average level r̄ of the upper surface by more than a predefined threshold t, i.e.
where |r̄ − z| > t. Burr locations are then collected into connected sets, and
aggregated information on these burr regions is reported. This comprises the
number of regions, the highest value of each region, the position of the burrs
and statistics about sizes and ellipsoidal diameters.

3.3 Calculation of Transcription Accuracy

The algorithm for determining the transcription of all filter columns basically
consists of four steps. The results of the steps are presented in Fig. 4.

First, the upper surface is segmented by the Otsu method. In order to iden-
tify the single filter columns on the entire upper surface, the surface is divided
into its connected components by a morphological labeling step. All connected
components are classified into filter columns or non-channel regions. This deci-
sion can simply be made based on the sizes of the identified objects. Note that
the segmentation procedure is performed on the reference data so that defects of
pillars or in channels will not introduce erroneous splitting or joining of segments.

To suppress influence from burrs in near-edge areas and measurement arti-
facts, all objects identified before are reduced in size by erosion.

Finally, a transcription parameter is calculated for each filter column. This
involves the determination of the average value r̄i of the overlapping regions
between the eroded objects (columns) and the template image as well as the
calculation of the average value of the upper surface r̄0. Thus, the transcription
parameters are the height differences di between those respective values,

di = |r̄0 − r̄i| , i = 1, . . . , n . (5)

3.4 Detection of Defective Regions

The algorithm is divided into three main steps: exclusion of biasing areas, detec-
tion of deviations and characterization of the detected deviations. The results of
the steps are depicted in Fig. 5.
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a b c d

Fig. 4. Results of individual processing steps for calculating the transcription accuracy
of all filter columns. Left to right: (a) Raw image – (b) Segmentation of the upper
surface – (c) Result of morphological labeling – (d) Erosion of the labeled objects.

In a first step, all regions which do not contribute and may have a negative
influence on the detection results are excluded from the inspection. As already
explained above, those biasing areas are located around the channel boundaries.
In order to identify them, the surfaces are segmented by the Otsu method. Simi-
lar as in the transcription accuracy analysis, a morphological gradient operation
yields an image which contains a segmentation of all areas around the borders.

The second step is to detect all deviations between the reference and the
transformed template image. By calculating the difference between the sensed
image and the model image as well as excluding the overlapping regions of the
result from the first step, it is possible to identify all real deviations. Further
application of morphological opening removes the remaining artefacts. This cor-
responds to a similar approach proposed by Tait et al. [20]. The determination
of the structure element’s size plays a crucial role in this context. Oversized el-
ements would result in the removal of possible defects, undersized would lead
to the detection of small defects, which actually are phantoms. The defects or
impurities are then located by applying labeling. At this point the defects are
detected as well as labeled and can be characterized.

The last step aims at characterizing the individual defects and reporting
information about them. For each defect, its ellipsoidal diameter and size are
determined. Aggregating over all defects, statistics of these quantities are calcu-
lated, including mean, standard deviation, minimum and maximum. Secondly,
information about the location of the defects is gathered. The locations of the
defects are determined by several processing steps. At first a distinction between
defects on the upper surface outside channels, and defects in channels is made.
This is accomplished by inspecting the defects overlapping regions in the refer-
ence image and the corresponding intensity values in the model. Additionally,
defects within channels are classified into defects within a filter structure, out-
side but near to a filter structure, or remote from all filter structures. This is
accomplished by calculating Euclidean distances between a given defects and the
nearest filter columns. If the distances of two or more columns are beneath a
given threshold, the defect is located in a filter structure and has the potential
to block the structure. If only one filter column is found in the proximity, the
defect lies near the filter structure but not within it. Finally, if the number of
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Fig. 5. Results of the main processing steps for defect detection. Left to right: (a)
Raw image – (b) Morphological gradient – (c) Difference of model and acquired image –
(d) Opening of (c) – (e) Chip image with detected defects overlaid in white (originally,
defects are shown in color).

nearby filter columns is equal to zero, the defect lies completely outside the filter
structure.

4 Experimental Validation

4.1 Comparison with Manual Inspection

A set of 42 test images were selected to calculate the defined quality parameters.
In order to draw a comparison with manual inspection, the manually achieved
results were gathered. Unfortunately, it turned out that transcription parame-
ters could not be compared since they showed an excessive operator dependency
in manual measurements. Nevertheless, channel depths and burrs could be com-
pared. Results are shown in Fig. 6.

On average there is a difference of (0.2 ± 0.15)µm as far as channel depths
are concerned. This deviation is not significant. However, the surface-based cal-
culation of the channel depth is not only highly objective but also reflects the
real channel depth of the whole channel depicted in the acquired image.

Surprisingly, there is no correlation between the automatically and the man-
ually determined burrs. From the results in Fig. 6 it is evident that burr heights
derived in the automatic procedure are systematically lower than the manually
gauged burrs. Part of a possible explanation for this might be the definition of
the burr itself. Burrs are raised edges which exceed the normal part geometry
and occur at channel edges. Contrary to this definition, no distinction between
edges on the filter columns and channel edges is made in the manual gauging
process. Moreover, operators doing manual measurements tend to gauge burrs
against the surface level in the vicinity of the burr region, which may involve
a systematic underestimation of this surface level as compared to the globally
adjusted surface level of the automatic procedure.

4.2 Defect Detection

In order to illustrate the localization capabilities of defect detection, the iden-
tified deviations were investigated. A set of 50 test images was used for this
purpose. Tab. 4.2 shows the localization results. An overall number of 130 de-
fects was detected by the system. At first, the defects were localized as either
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Fig. 6. Top to bottom: (a) Comparison of channel depths – (b) Comparison of burrs.

being on the upper surface or within the channel. Altogether, 92 defects were
classified as channel defects. The remaining 38 defects were categorized as being
located on the upper surface. In addition, the 92 channel defects were classified
into three groups: in the filter structure, near the filter structure and outside the
filter structure. The system categorized 50 defects as being in the filter structure,
23 defects near the filter structure and 19 as being completely outside the filter.
Additionally, the identified defects were manually inspected in order to check
the reliability of the system. The classification was done independently from
the automated localization. The decision between channel defects and surface
defects completely matched with the automated inspection. However, results of
the second classification scheme slightly differed between manual investigation
and automated inspection. A total number of 54 defects were considered to be in
the filter, 20 near the filter and 18 completely outside the filter structure. These
small differences may indicate that the parameters for defect localization were
still not optimally adapted. Further work has to be done on fine tuning of the
parameters.

Table 1. Comparison of manual and automated localization of 130 detected defects.

Localization Number of defects
Automated Manual

On Surface 38 38

In Channel 92 92
– In Filter 50 54
– Near Filter 23 20
– Outside Filter 19 18
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5 Conclusion

We have demonstrated a system for automated quality control of microfluidic
chips. The system is capable of both the calculation of different quality char-
acteristics and detection as well as localization of defects. Image registration is
used to localize the region of interest and establish independence of rotation and
translation. Morphological image processing techniques play a crucial role in the
analysis step.

Experimental comparison with manual inspection demonstrated the advan-
tages of the system. The benefit is not only that the demand for human workforce
for quality inspection is reduced but also the reproducibility and reliability of
so computed quality parameters is higher due to the elimination of the subjec-
tive manual gauging. The removal of the human influence leads to an objective
evaluation method.

Further work is necessary to raise the performance of the developed system,
primarily by more efficient implementation of critical parts, and overall code
optimization. Ongoing work focuses on revising the parameters and criteria in
the quality inspection. Besides introducing new quality criteria, defect detection
needs to be made more specific. For example, shape defects should be distin-
guished from surface defects. Shape irregularities may result in the jamming of
filter structures, thus interfering with the chip’s functionality. In contrast, sur-
face defects in uncritical areas may be completely irrelevant. Considerably more
work will be needed to develop classification capabilities. Given the determined
quality parameters and the number, size as well as location of the detected de-
fects, a classification system will be able to support the operators in deciding
whether the chip should be accepted or rejected.

We expect that the further development of the presented system will even
strengthen its benefit in terms of objectivity and reliability, and turn it into a
powerful tool in routine quality inspection.
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