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Abstract

The order-p mean of a finite multiset of real numbers is the minimiser of the sum of
p-th powers of the distances to all numbers in the multiset. From Gauß’ and Legendre’s
work on least squares estimation and the arithmetic mean (p = 2), this concept has
developed in progressing generality. First, it was established for positive integer p, with
p = 1 yielding the median as proven by Glaisher and Fechner. The further generalisation
to arbitrary positive real p was considered by Jackson, Barral Souto and Fréchet who
also established that the limits p → 0 and p → ∞ yield the mode and mid-range value
of the data, respectively. Replacing sums by integrals, order-p means can be defined for
continuous densities of real numbers; Fréchet contributed substantially to the study of
this concept. Whereas the inclusion of the arithmetic mean and median in the scale of
order-p means as well as the mid-range limit transfer straightforward to the continuous
case, this is not the case for the mode limit, as was pointed out by Fréchet. Inspired
by applications in signal and image processing, we present in this work an extension of
order-p means of continuous densities to negative exponents between −1 and 0. We show
that for densities with a unique global maximum (mode) the order-p means approach the
mode for p→ −1. We demonstrate the relation between the extended order-p means and
modes by numerical examples.

Keywords: order-p means, mode.

1. Introduction
Given a positive real parameter p, the order-p mean of a finite multiset X of real numbers is
defined as the minimiser of the sum of p-th powers of distances to all numbers in the multiset,

µp(X ) = argmin
µ∈R

∑
x∈X
|µ− x|p . (1)

The concept can easily be generalised to weighted means and to continuous distributions
described by densities. Its history goes back to works by Laplace (1774) (with p = 1), Legendre
(1805) and Gauss (1809) (with least-squares minimisation, p = 2). Due to the important
contributions of Fréchet (1946, 1948a,b,c) to their theory, order-p means are sometimes also
termed Fréchet means. However, as this term is sometimes used in a wider or narrower sense,
we stick with the name order-p means. We will give a few more historic facts in Section 2.3.
For a significantly more detailed account we recommend a paper by Armatte (2006) which

http://www.ajs.or.at
http://www.ajs.or.at/
www.osg.or.at
https://orcid.org/0000-0002-6268-7050


2 Extended Order-p Means and Modes

was also of great help to the author of the present work in tracking down historical facts and
locating references.
As noted already by Legendre and Gauß, the case p = 2 yields the arithmetic mean of X ;
Glaisher (1872) and Fechner (1878) showed that for p = 1 the median is obtained. In a
report by Barral Souto (1938) it was proven that for any given X , the limit of order-p means
for p → 0 is the mode of X , i.e. the most frequent value (provided this is unique). Jackson
(1921) found that the limit for p → ∞ yields the mid-range, i.e. the arithmetic mean of the
smallest and largest number in X . By definition, order-p means are shift-equivariant and
scale-equivariant, i.e. a shift or scaling applied to the input data before taking the mean is
equivalent to applying the shift or scale after taking the mean.
As to nomenclature, order-p means are not to be confused with the other famous parametrised
family of means, viz. the power means of order p ∈ R which are defined only for positive (or
if p > 0, nonnegative) numbers, and which are only scale-equivariant but not shift-invariant.
However, both families of means stand in an obvious relation as the order-p mean can also be
stated, equivalent to (1), as minimiser of the power-p mean of distances from µ to the given
numbers.
For continuous distributions, the special cases p = 1 and p = 2 carry over in an obvious
way, as does the limit for p → ∞ (with an “essential” mid-range value obtained from the
supremum and infimum of the support of the density). More difficult is the case p → 0:
A short remark in Jordan (1927) without proof suggests that this again leads to the mode
of a distribution. This intuition was proven wrong by Fréchet (1948b,c). Fréchet’s analysis
brought out, instead, that order-p means of a continuous distribution tend for p → 0 to a
limit µ0 which minimises the geometric mean of distances from the given values. This is in
perfect agreement with the well-known facts about power means where the geometric mean
fits in in place of the otherwise undefined case p = 0.

Applications in data analysis. Order-p means of univariate data continue to be used in
data analysis, see e.g. Livadiotis (2017) who is concerned with the case p ≥ 1 and derives
approximation laws.
Many authors consider the generalisation to data on Riemannian manifolds, see e.g. Arnaudon
and Miclo (2014); Afsari (2011); Cazals, Delmas, and O’Donnell (2020), with applications
in clustering, see Cabanes, Barbaresco, Arnaudon, and Bigot (2019); Cazals, Delmas, and
O’Donnell (2021), or geodesic principal component analysis, see Pennec (2020). Whereas
often the case p ≥ 1 receives the main interest, also p ∈ (0, 1) is explicitly included in the
investigations e.g. of Cabanes et al. (2019). An adaptation of the Weiszfeld algorithm for
multivariate L1 medians Weiszfeld (1937) to Riemannian order-p means with 1 ≤ p < 2 is
considered in Aftab, Hartley, and Trumpf (2015).

Application in signal and image processing. Starting with the introduction of the
median filter in signal processing by Tukey (1971), estimators like order-p means have also
been used to construct a class of local filters for signals and images. Based on the nomenclature
from robust statistics, see Huber (1981), where order-p means belong to the class of M-
estimators, such filters are often called M-smoothers. M-smoothers based on order-p means
were introduced by Torroba, Cap, Rabal, and Furlan (1994). In this context, the relation
between continuous distributions (assumed as underlying measured signals and images) and
discrete data (which are actually processed) again becomes relevant.
In image processing, it is interesting to relate local filters based on discrete procedures to
such that are derived from partial differential equations (PDEs). For example, the median
filter asymptotically approximates, via a reformulation of the median filtering procedure for
images over continuous domains, the curvature motion PDE, as shown by Guichard and
Morel (1997). Extensions of this result to M-smoothers based on other order-p means were
investigated first in Griffin (2000); Griffin and Lillholm (2003). Taking up this line of research
recently, we could establish PDE limits for all p > 0 and the mode filter of images modelled
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by functions of sufficient regularity over the continuous domain (Welk and Weickert 2019,
2021). In agreement with Fréchet’s findings, the limit p → 0 does not yield the PDE of the
mode filter.

Extended class of order-p means. Surprisingly, setting formally p = −1 in the M-
smoother PDE, however, yields the same PDE as the mode filter. This triggered us to consider
whether order-p means for p < 0 could make sense, such as to allow a limit transition p→ −1.
Indeed, in the continuous case (but not for discrete data) such an extension is possible for
−1 < p < 0. Due to the decreasing (instead of increasing) behaviour of the penalisers
|µ−x|p for negative p, the objective function needs to be modified by a factor sgn(p) to allow
minimisation. We could prove (Welk and Weickert 2019) that the so defined M-smoothers
asymptotically approximate PDEs perfectly matching the PDE family for positive p, and
indeed yield for p→ −1 the PDE approximated by mode filtering as limit.
It appears intriguing to try to generalise order-p means even further to exponents p ≤ −1.
Indeed, the image filtering PDE from (Welk and Weickert 2019) could formally be consid-
ered for such p; note that already Gabor (1965) proposes an image filtering equation that
corresponds to a time step of that PDE with p = −2, see also Lindenbaum, Fischer, and
Bruckstein (1994). However, following the lines of existing definitions, we see no meaningful
way to such a generalisation of the order-p means.

Goals of this work. The evidence accumulated so far can be seen as a hint that the mode
could fit into an extended family of order-pmeans of continuous distributions at the parameter
value p = −1. The PDE limit results from Welk and Weickert (2019, 2021), however, are not
sufficient to prove this since the same PDE can be approximated by multiple local filters.
In this work, we undertake to close this gap. We will prove that the extended family of order-p
means indeed converges to the mode filter for p → −1, thereby complementing the picture
drafted by earlier work on order-p means up to Fréchet.
We point out that the focus of this paper is theoretical. The design of possible data analysis
applications based on the extended class of order-p means should be discussed by experts in
suitable application fields.

Structure of the paper. In Section 2 we recall the existing results about order-p means and
add some historic context. Section 3 we discuss the extension of order-p means to negative
parameters p > −1 and prove our main result. Section 4 is devoted to demonstrations of
the result by a combination of analytical and numerical reasoning for sufficiently accessible
example functions, with part of the derivations placed in Appendix A. A summary is presented
in Section 5.

2. Concept of order-p means
In this section we present essential facts about order-p means for p > 0, thereby filling in
somewhat more detail into what has been outlined in the introduction. Throughout this paper,
we denote by R+ and R+

0 the sets of positive and nonnegative real numbers, respectively.

2.1. The discrete case

The basic definition of order-p means has been given above (1).

Relation to power means. Given a real number p 6= 0, one can define the p-th power mean
Mp of a finite multiset X of positive (or, for p > 0, even nonnegative) real numbers as

Mp(X ) =
(

1
#X

∑
x∈X

xp
)1/p

(2)
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where #X is the cardinality of X . This family, too, contains the arithmetic mean as a special
case but for p = 1. Further important special cases include p = 2, the quadratic mean, and
p = −1, the harmonic mean. For any given X , power means Mp(X ) increase monotonically
with p, strictly monotonically if X contains at least two distinct numbers. It is also well-known
that for p → 0, Mp(X ) approaches the geometric mean, which therefore can be denoted as
M0(X ) to fill in the gap in the parameter range, see e.g. (Bullen 2003, p. 175), (Gustin 1950),

M0(X ) =
(∏
x∈X

x

)1/#X

. (3)

The two parametrised families of means are related since by an obvious reformulation the
order-p mean can be stated as the minimiser of the p-th power mean of distances from µ to
the given data,

µp(X ) = argmin
µ∈R

Mp(|µ−X|) , (4)

where |µ−X| denotes the multiset obtained from X by replacing each element x with |µ−x|.
Despite superficial similarities, the two families of means address significantly different situa-
tions: Power means (with the exception of the arithmetic mean, p = 1, and those of odd integer
p) are suitable only for positive numbers and are equivariant to scaling (1-homogeneous), i.e.
for any α > 0 one has

Mp(αX ) = αMp(X ) (5)

where αX := {αx : x ∈ X} denotes the multiset in which each element is scaled with α.
Order-p means, in contrast, are defined for data from the entire real line, and are equivariant
not only to scaling but also to translations (thus, affine equivariant).

Weighted means. It is straightforward to generalise (1), (2) and (3) into weighted means.
We state this exemplarily for the order-p means. Let X be a set of real numbers equipped
with a weight function w : X → R+

0 with
∑
x∈X

w(x) = 1. We can lift here the restriction that

X needs to be finite. The condition that w sums up to unit total weight entails that the
support – the set of values x ∈ X with w(x) > 0 – is countable.
The weighted order-p mean is then given by

µp(X , w) = argmin
µ∈R

∑
x∈X
|µ− x|pw(x) . (6)

All statements above about special cases, limits, and the relation between order-p means and
power means remain valid for weighted means.

2.2. Means in the continuous domain
We turn now to replace discrete (multi-) sets X of values by continuous distributions on
the real axis. More precisely, we consider piecewise continuous densities γ : R → R+

0 with∫
R
γ(x) dx = 1. For such a density γ we can easily state an analogon of (1):

µp(γ) = argmin
µ∈R

∫
R

|µ− x|pγ(x) dx . (7)

Similarly, for piecewise continuous densities γ : R+ → R+
0 on the positive real axis with∫

R+
γ(x) dx = 1, the p-th power mean and the geometric mean can be stated as

Mp(γ) =

 ∫
R+

xpγ(x) dx

1/p

, M0(γ) = exp

 ∫
R+

ln x · γ(x) dx

 . (8)
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Again, the order-pmean can be reformulated as minimiser of the p-th power mean of distances:
If γµ,+ denotes the density obtained from γ through shifting it by µ and folding the negative
and positive parts of the real axis,

γµ,+(x) := γ(µ+ x) + γ(µ− x) , x ≥ 0 , (9)

we have for p > 0 that

µp(γ) = argmin
µ∈R

Mp(γµ,+) . (10)

2.3. A brief historical excursus

The concept of order-p means has developed since around 1800 with gradually increasing
generality. With the works of Legendre (1805) and Gauss (1809), least-squares approxima-
tion was established early in the 19th century as a method for estimating quantities from
noisy data. Both authors noticed that the minimisation of the sum of squared distances to
given numbers, or equivalently, minimisation of the quadratic mean of deviations, yields the
arithmetic mean. In Legendre’s work, the reasoning already points to the concept of the con-
tinuous generalisation. In turn, Gauß already mentions the possibility to use other (namely,
even positive integer) exponents p instead of 2, justifying the choice p = 2 pragmatically
(Gauss 1809, p. 221), and also mentions the mid-range limit for p → ∞. However, with the
further theory developing around Gauß’ normal distribution that leads to least-squares ap-
proximation as maximum likelihood estimator, and Moivre-Laplace’s theorem that supports
the assumption of normal distribution for a range of contexts, discussion focused on least
squares and arithmetic mean for the next decades.
Decades before Legendre’s and Gauß’ work, Boscovich and Maire (1770) had already brought
up the minimisation of the sum of absolute deviations, as in order-1 means, for the estimation
of linear function coefficients from noisy measurements. Laplace (1774) had linked it to what is
now known as the Laplace distribution, and also identified the order-1 mean of three numbers
as the middle of these, i.e. their median, but apparently stopped short of generalising this
to larger data sets. After the least-squares method was established, Laplace, too, turned to
advocating p = 2 (Laplace 1820, p. 318pp.).
It was Ellis (1844) who brought back to attention that squares of deviations are not a priori
the only choice, and that it needs justification to prefer these over other increasing functions of
absolute deviations. Glaisher (1872) then considered the minimisation of the sum of absolute
deviations, thus, the order-p mean with p = 1, and was able to prove that it coincides with
the median of the values for any finite multiset of numbers. A few years later, Fechner (1878)
studied the concept of order-p means for integer p > 0 and proved again that p = 1 yields the
median.
Discrete order-p means with non-integer p seem to make their first appearance with Jackson
(1921) who was mostly interested in the limit p→ 1 as a way of approximating the median.
In their own right, order-p means with non-integer p were studied by Barral Souto (1938)
who also proved that discrete order-p means for p → 0 approach the mode of a discrete real
multiset. Without a proof, this connection was also mentioned before in a short remark in
(Jordan 1927, p. 172).
Fréchet studied order-p means and related means in several papers (Fréchet 1946, 1948a,b,c).
In (Fréchet 1948b,c), he considers the limit p→ 0 and carries out a detailed analysis involving
different kinds of distributions of input data as well as different concepts of the limit involved.
Besides, he also extends in (Fréchet 1948c) on p → ∞ which results in the mid-range value
of the given data. For p → 0, Fréchet distinguishes between (finite) discrete distributions
and general distributions which comprise such with continuous densities as considered in our
present work as well as mixed distributions in which a continuous density is combined with
an enumerable set of values with positive probability. In the discrete case he considers three
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possible interpretations of the limit p→ 0, two of which lead to reasonable limits, and agree
in reproducing the mode of the discrete distribution as the relevant limit. He finds that for
purely continuous distributions the order-p means for p → 0 approach a value for which the
geometric mean of absolute distances to the input data is minimised. In contrast, for mixed
distributions, the discrete component dominates for p → 0, effectively making the mode of
the discrete component the limit value.

3. Extended family of order-p means
In this section we focus on the extension of continuous order-p means of a continuous dis-
tribution to the extended parameter range p > −1, p 6= 0, and prove our approximation
result for the mode value. We emphasise that this generalisation is not applicable to the case
of discrete data (finite multisets) or mixed discrete–continuous distributions as the objective
functions that are minimised by order-p means with negative p will have poles (diverging to
−∞) at any values with positive probability.

3.1. Definition of extended order-p means

The following definition follows Welk and Weickert (2019, 2021).

Definition 1 (Continuous order-p mean). Let γ : R → R+
0 be a continuous density, i.e. a

piecewise continuous function with
∫
R
γ(x) dx = 1.

The order-p mean µp(γ) for p > −1, p 6= 0 is given by

µp(γ) := argmin
µ∈R

Ep,γ(µ) (11)

where
Ep,γ(µ) := sgn(p) ·

∫
R

|µ− x|pγ(x) dx . (12)

Since for p < 1 the objective function (12) can be non-convex, it is possible that the global
minimum is attained at multiple locations. Densities for which this happens are, however,
non-generic, i.e. turn by small perturbations into such with unique global minimisers. We do
therefore not consider these bifurcation cases in detail.

Remark 1. The reformulation (10) of order-p means via power means transfers verbatim to
−1 < p < 0. Note that the negative exponent 1/p in the definition of Mp has the same effect
of inverting the monotonicity of the penalisers |µ− x|p as the sign factor in (12).
Moreover, by the inclusion of the geometric mean for p = 0 in (8), the definition of order-p
means via (10) can also be used to close the gap in Def. 1, thus leading to a concept of order-p
means for all real p > −1. Note that the insertion of this case is in accordance with Fréchet’s
limit result (Fréchet 1948b,c).

3.2. Mode limit

Lemma 1. Let γ be as in Definition 1. Let δ, ε > 0 be given. Let m,µ ∈ R be given such
that for all z, ζ ∈ R with |z −m| ≤ ε, |ζ − µ| ≤ ε one has

γ(z) > γ(ζ) + δ . (13)

Then there exists some η > 0 such that for all p, −1 < p < −1+η one has Ep,γ(m) < Ep,γ(µ).
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Proof. Consider p with −1 < p < 0. By definition

Ep,γ(µ)− Ep,γ(m) = −
∞∫
−∞

|µ− z|pγ(z) dz +
∞∫
−∞

|m− z|pγ(z) dz

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 , (14)

I1 = −
µ−ε∫
−∞

(µ− z)pγ(z) dz , I2 = −
µ∫

µ−ε

(µ− z)pγ(z) dz , (15)

I3 = −
µ+ε∫
µ

(z − µ)pγ(z) dz , I4 = −
∞∫

µ+ε

(z − µ)pγ(z) dz , (16)

I5 =
m−ε∫
−∞

(m− z)pγ(z) dz , I6 =
m∫

m−ε

(m− z)pγ(z) dz , (17)

I7 =
m+ε∫
m

(z −m)pγ(z) dz , I8 =
∞∫

m+ε

(z −m)pγ(z) dz . (18)

By the decreasing monotonicity of |z|p, and non-negativity of γ we have

I1 + I4 ≥ −εp

 µ−ε∫
−∞

+
∞∫

µ+ε

 γ(z) dz ≥ −εp
∞∫
−∞

γ(z) dz = −εp . (19)

Nonnegativity of the integrands in I5, I8 yields

I5 + I8 ≥ 0 . (20)

By the hypothesis (13) we have

I2 + I6 =
0∫
−ε

(−z)p
(
γ(m+ z)− γ(µ+ z)

)
dz ≥ δ

0∫
−ε

(−z)p dz = δ

p+ 1ε
p+1 , (21)

I3 + I7 =
ε∫

0

zp
(
γ(m+ z)− γ(µ+ z)

)
dz ≥ δ

ε∫
0

zp dz = δ

p+ 1ε
p+1 . (22)

Combining all estimates yields

Ep,γ(µ)− Ep,γ(m) ≥ εp
( 2εδ
p+ 1 − 1

)
. (23)

Clearly, for any given δ, ε > 0 the expression on the right-hand side of the last inequality
becomes positive for p sufficiently close to −1, which concludes the proof of the lemma.

Proposition 2. Let γ be as in Definition 1, and let γ possess a unique mode, i.e. a local
maximum m ∈ R such that for any other local maximum m′ of γ one has γ(m′) < γ(m)− τ
with some global constant τ .
Then µp(γ) approaches m for p → −1 in the following sense: For each ε > 0 there exists
some η > 0 such that for all p, −1 < p < −1 + η one has |µp(γ)−m| ≤ ε.

Proof. Given ε as assumed in the proposition, let

δ̃ := max
z∈[m−ε,ε]

(
γ(m)− γ(z)

)
. (24)
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If δ̃ > δ, reduce ε until δ̃ ≤ δ. Let further

δ∗ := min
z∈R\[m−ε,m+ε]

(
γ(m)− γ(z)

)
. (25)

Certainly one has 0 < δ∗ ≤ δ̃ ≤ δ. Since there is no local maximum of γ outside m with a
value closer than δ to γ(m), one can find a positive ε∗ < ε/2 such that

max
z∈[m−ε∗,m+ε∗]

(
γ(m)− γ(z)

)
< 1

3δ
∗ and (26)

min
z∈R\[m−ε+ε∗,m+ε−ε∗]

(
γ(m)− γ(z)

)
> 2

3δ
∗ . (27)

Using the values ε∗ and 1
3δ
∗ for ε and δ in its hypothesis, Lemma 1 yields the desired result.

3.3. Complementary remarks

Heuristically, the mode limit of order-p means for p → −1 can be understood also on the
level of penalisers. If one rescales the penaliser from (12) as − 1

p+1 |µ− x|
p, one can establish

that it weakly converges for p → −1 to the negative Dirac impulse −δ(µ − x). Thus, the
minimisation of its integral analogous to (12) becomes the minimisation of −γ(µ), leading by
definition to the mode of γ.
This is similar to the situation in the discrete setting where the penalisers |µ−x|p for p→ +0
converge to a function s(µ−x) with s(0) = 0 and s(z) = 1 for z 6= 0, see Barral Souto (1938),
turning the objective function into a jump function that counts for each µ the number of data
values from the finite multiset that are different from µ, and is again minimised by the mode.
In the context of signal and image processing where the discrete data being processed are
in fact samples from continuous-scale distributions, it is important to understand why the
simple transfer from the discrete to the continuous setting that works well for p ≥ 1 fails for
the mode limit. For this aspect we refer to (Welk and Weickert 2021, Sect. 5) where it has
been discussed that a proper model of the sampling of signal and image data indeed links the
discrete limit p→ +0 to a finite-volume discretisation of the continuous-scale limit p→ −1.

Multivariate data. The concept of order-p means can in principle be adapted to data from
the Euclidean space Rd with d > 1 by using the penaliser |µ−x|p where |µ−x| denotes the
Euclidean distance of µ,x ∈ Rd.
It is straightforward that p = 2 again leads to the arithmetic mean or centre of gravity of the
input data whereas p = 1 corresponds to the so-called L1 median (Gini and Galvani 1929;
Weber 1909), both in the discrete and continuous case. Also the discrete mode approximation
result for p → +0 transfers in a straightforward way. For continuous densities over Rd, the
order-p mean can be defined for p > −d, and the penalisers weakly converge for p → −d
to a negative Dirac impulse. It can therefore be expected that d-dimensional order-p means
approximate the mode of a continuous density in this case.
It should, however, be noted that for data from Rd already the L1 median is only one of
several multidimensional generalisations of the median, see Small (1990); Welk (2019) and
further references therein. As pointed out in these sources, it is controversial whether, and
for which applications, the L1 median is actually a suitable choice, mainly because of its
reliance on a Euclidean structure on Rd which is not always justified in applications. This
also puts into question how meaningful the straightforward generalisation of order-p means
is for multivariate data from Rd. An important drawback of the L1 median is its lack of
equivariance with regard to affine transformations of the data space. Regarding order-p
means, it is easy to check that whereas in the one-dimensional case they are equivariant
under affine transformations for any p, this is true in d > 1 dimensions only for p = 2 and
the presumable mode limit case p→ −d.
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Widening the view further to d-dimensional differentiable manifolds, the generalisation of
order-p means as minimisers of a sum of p-th powers of metric distances clearly makes sense
for Riemannian manifolds because of their locally Euclidean structure, which has indeed
been exploited in data analysis literature, see Cabanes et al. (2019) and the other references
mentioned already in the introduction. In this setting, also the extension to −d < p < 0 with
a mode-type limit for p→ −d could be worth considering.
As a thorough discussion of these questions goes beyond the scope of the present work, we
keep the focus here on the one-dimensional case and defer further investigation of multivariate
order-p means to future work.

4. Demonstrations of the theoretical results
This section aims at illustrating the theoretical result obtained in the last section on simple
examples by a combination of analytical and numerical means. First we will consider a
particularly simple example for which the limit property can be demomstrated by analytical
means. After this, we will consider a slightly richer set of examples based on B-spline basis
functions for which the objective functions can be derived in a purely analytical manner, and
evaluated by numerical calculations with high precision.

4.1. Analysis of a toy example

Modified from (Welk and Weickert 2021) we consider the following (non-normalised) density
function:

γ(x) =
{

1− λx2 , x ∈ [−1 + r, 1 + r] ,
0 else

(28)

where λ and r are parameters with 0 < r � 1, 0 < λ < (1 + r)−1. The mode of this density
is obviously 0.
The order-2 mean of γ is the arithmetic mean of x weighted with γ, i.e.

µ2(γ) =

1+r∫
−1+r

(1− λx2)x dx

1+r∫
−1+r

(1− λx2) dx
=

[
x2

2 − λ
x4

4

]1+r

−1+r[
x− λx3

3

]1+r

−1+r

= (1− λ)r − λr3

1− λ/3− λr2 . (29)

Since r � 1, we have by neglecting O(r3) contributions

µ2(γ) ≈ 1− λ
1− λ/3r . (30)

The order-1 mean of γ is the median of x weighted with γ, which can be described as the
bisector of the integral over γ. We have therefore µ1(γ) = µ where

µ∫
−1+r

1− λx2 dx =
1+r∫
µ

1− λx2 dx (31)

which after solving the integrals and sorting terms becomes

µ− λ

3µ
3 = (1− λ)r − λ

3 r
3 . (32)

Due to r � 1, we have by neglecting the O(r3) term

µ1(γ) ≈ (1− λ)r . (33)
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For general p > −1, p 6= 0, the order-p mean of γ can be approximately obtained by adapting
the derivation from (Welk and Weickert 2021) as

µp(γ) = 1− λ
1− p−1

p+1λ
r + O(r3) (34)

which obviously matches the previous findings for µ2 and µ1.
For p→ −1, one sees that µp(γ) approaches 0 (up to O(r3)) in agreement with the expectation
that this limit should yield the mode of γ.
For p→ 0, one has (for any fixed λ and r)

lim
p→0

µp(γ) = 1− λ
1 + λ

r + O(r3) . (35)

According to the finding from Fréchet (1948c) the order-0 mean of γ is the minimiser µ of
the geometric mean of |µ− x| weighted with γ, i.e.

µ0(γ) = argmin
µ

∫
R

γ(x) ln|µ− x|dx . (36)

Due to differentiability of the involved functions we can determine the minimiser µ by

0 = d
dµ

 µ∫
−1+r

(1− λx2) ln(µ− x) dx+
1+r∫
µ

(1− λx2) ln(x− µ) dx


= 2λ(r + µ) + (1− λµ2)

(
ln(1− r + µ)− ln(1 + r − µ)

)
. (37)

For details of the derivation of this condition see Appendix A.1.
For r � 1, one has µ ∼ r which allows to use the Taylor expansion of ln at 1 to derive

µ0(γ) ≈ 1− λ
1 + λ

r (38)

in agreement with the expression obtained above for lim
p→0

µp(γ).

4.2. Numerical test of the mode limit

To construct numerical examples we use the cubic B-spline basis function

B3(x) = 1
6(2 + x)3χ[−2,−1)(x) +

(2
3 − x

2 − 1
2x

3
)
χ[−1,0)(x)

+
(2

3 − x
2 + 1

2x
3
)
χ[0,1)(x) + 1

6(2− x)3χ[1,2](x) (39)

where χS denotes the characteristic function of a set S ⊂ R. Note that B3 is twice continously
differentiable, has total weight 1, is supported on [−2, 2], and piecewise cubic.
For our numerical experiments, we will use convex combinations of scaled and shifted cubic B-
spline basis functions as densities. A density of this class is characterised by a positive integer
n and three finite sequences (αi)i=1,...,n (weights), (ξi)i=1,...,n (centres), (σi)i=1,...,n (width) of
real numbers with αi > 0 and σi > 0 for i = 1, . . . , n and

∑n
i=1 αi = 1. The density then

reads as

γ(x) =
n∑
i=1

αi
σi
B3

(
x− ξi
σi

)
. (40)
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Figure 1: Plots of example densities γ composed of B-spline basis functions according to (40)
with selected objective functions Ep(x) and order-p means µp for parameters p ∈ (−1, 0). On
top of each diagram the density γ is shown (solid line); objective functions Ep(x) (dotted and
dash-dotted lines) are rescaled and shifted such that the global minimum of Ep is placed at
height p where also the curve of µp (thick solid line) passes through.
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The objective function (12) from the definition of the extended order-p means, −1 < p < 0,
for this density is given by

Ep,γ(µ) =
n∑
i=1

αiσ
p
i Ep,B3

(
µ− ξi
σi

)
. (41)

Herein, Ep,B3 is the objective function for the B-spline basis function (39). For its numerical
evaluation we use the analytical expression (49) stated in Appendix A.2.
Fig. 1 shows numerical results computed with three different densities of this type. Each
subfigure shows a density γ and objective functions Ep(x) for selected values of p ∈ (0, 1) as
computed by evaluation of the analytic expressions (40) and (41), respectively, for parameters
shown in the figure. Minimisers µp were computed by grid search with resolution 0.001 on
the x and p axes, and are shown in the same frame. In Fig. 1(a) it can be seen that µp
slowly varies from µ0 to µ−1 (the mode) as p decreases from 0 to −1. For the density in
Fig. 1(b) the continuous evolution of µp is interrupted by a jump from one minimum of Ep
to another at p ≈ −0.378. The third example in Fig. 1(c) demonstrates that for sufficiently
complex densities, several jumps of this kind can occur (here, at p ≈ −0.467, p ≈ −0.652 and
p ≈ −0.887).

5. Summary
Motivated by applications in signal and image processing, we have proposed an extension of
order-p means for continuous densities to exponents p between 0 and −1. This generalisation,
which has no counterpart in the case of discrete and mixed distributions, takes the family of
order-p means to a presumptive endpoint since it appears to be the most general formulation
of order-p means possible in the case of one-dimensional continuous densities.
We have shown that order-pmeans in this generalised sense approach the mode of a continuous
density for p→ −1. Our result complements the picture drawn by earlier works by Jackson,
Barral Souto and Fréchet who had shown that order-p means approach the mode for p → 0
for discrete and mixed distributions but not for continuous distributions. Analytical and
numerical examples were presented to demonstrate the limit result.
A generalisation to multivariate continuous densities is possible but entangled with further
questions about the appropriate multivariate median concept, and equivariance properties.
Therefore this direction of research has been left for future work.
We assume that the extended family of order-p means can be made useful in the one or other
way in data analysis applications. However, we do not attempt at designing a particular
application of this kind here because we believe that this is a task more competently done by
dedicated data analysis experts.

A. Detailed calculations
In this Appendix, we provide detailed calculations for the examples from Section 4.

A.1. Derivation of the minimiser in the toy example

We derive Equation (37) of Section 4.1.
By an obvious rewrite of (36), we have

µ0(γ) = argmin
µ

µ∫
−1+r

(1− λx2) ln(µ− x) dx+
1+r∫
µ

(1− λx2) ln(x− µ) dx . (42)
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Taking derivatives, we have

0 = d
dµ

 µ∫
−1+r

(1− λx2) ln(µ− x) dx+
1+r∫
µ

(1− λx2) ln(x− µ) dx


= d

dµ

 1−r+µ∫
0

(
1− λ(µ− x)2) ln x dx+

1+r−µ∫
0

(
1− λ(µ+ x)2) ln x dx


= d

dµ

(1− λµ2)
1−r+µ∫

0

ln x dx+ 2λµ
1−r+µ∫

0

x ln x dx− λ
1−r+µ∫

0

x2 ln x dx

+ (1− λµ2)
1+r−µ∫

0

ln x dx− 2λµ
1+r−µ∫

0

x ln x dx− λ
1+r−µ∫

0

x2 ln x dx


= −2λµ

1−r+µ∫
0

ln x dx+ (1− λµ2) ln(1− r + µ) + 2λ
1−r+µ∫

0

x ln x dx

+ 2λµ(1− r + µ) ln(1− r + µ)− λ(1− r + µ)2 ln(1− r + µ)

− 2λµ
1+r−µ∫

0

ln x dx− (1− λµ2) ln(1 + r − µ)− 2λ
1+r−µ∫

0

x ln x dx

+ 2λµ(1 + r − µ) ln(1 + r − µ) + λ(1 + r − µ)2 ln(1 + r − µ)
= −2λµ [x ln x− x]1−r+µ0 − 2λµ [x ln x− x]1+r−µ

0

+ 2λ
[

1
2x

2 ln x− 1
4x

2
]1−r+µ

0
− 2λ

[
1
2x

2 ln x− 1
4x

2
]1+r−µ

0
+ (1− λµ2) ln(1− r + µ)− (1− λµ2) ln(1 + r − µ)
+ 2λµ(1− r + µ) ln(1− r + µ) + 2λµ(1 + r − µ) ln(1 + r − µ)
− λ(1− r + µ)2 ln(1− r + µ) + λ(1 + r − µ)2 ln(1 + r − µ)

= 2λ(r + µ) + (1− λµ2)
(
ln(1− r + µ)− ln(1 + r − µ)

)
, (43)

i.e. (37) as claimed.

A.2. Objective function of the mode limit example

We aim at deriving an analytical expression for the objective function Ep,B3(µ) used in the
numerical test of the mode limit, Section 4.2.
Inserting (39) for γ into (12) for −1 < p < 0, we have

Ep,B3(µ) = −
−1∫
−2

1
6(2 + z)3|z − µ|p dz −

0∫
−1

(2
3 − z

2 − 1
2z

3
)
|z − µ|p dz

−
1∫

0

(2
3 − z

2 + 1
2z

3
)
|z − µ|p dz −

2∫
1

1
6(2− z)3|z − µ|p dz

= −
−1−µ∫
−2−µ

1
6(2 + µ+ z)3|z|p dz −

−µ∫
−1−µ

(2
3 − (µ+ z)2 − 1

2(µ+ z)3
)
|z|p dz

−
1−µ∫
−µ

(2
3 − (µ+ z)2 + 1

2(µ+ z)3
)
|z|p dz −

2−µ∫
1−µ

1
6(2− µ− z)3|z|p dz . (44)
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Abbreviating

Ik(a, b) =
b∫
a

zk|z|p dz for k = 0, 1, 2, 3 (45)

we can further rewrite (44) to

Ep,B3(µ) = −1
6(2 + µ)3I0(−2− µ,−1− µ)− 1

2(2 + µ)2I1(−2− µ,−1− µ)

− 1
2(2 + µ)I2(−2− µ,−1− µ)− 1

6I3(−2− µ,−1− µ)

−
(2

3 − µ
2 − 1

2µ
3
)
I0(−1− µ,−µ) +

(
2µ+ 3

2µ
2
)
I1(−1− µ,−µ)

+
(

1 + 3
2µ
)
I2(−1− µ,−µ) + 1

2I3(−1− µ,−µ)

−
(2

3 − µ
2 + 1

2µ
3
)
I0(−µ, 1− µ) +

(
2µ− 3

2µ
2
)
I1(−µ, 1− µ)

+
(

1− 3
2µ
)
I2(−µ, 1− µ)− 1

2I3(−µ, 1− µ)

− 1
6(2− µ)3I0(1− µ, 2− µ) + 1

2(2− µ)2I1(1− µ, 2− µ)

− 1
2(2− µ)I2(1− µ, 2− µ) + 1

6I3(1− µ, 2− µ) . (46)

Noticing that

Ik(a, b) = 1
p+ k + 1

(
|b|p+k+1(sgn b)k+1 − |a|p+k+1(sgn a)k+1

)
= Fk(b)− Fk(a) (47)

with
Fk(x) = 1

p+ k + 1 |x|
p+k+1(sgn x)k+1 , (48)

we finally obtain

Ep,B3(µ) =
(
−4

3 + 2µ− µ2 + 1
6µ

3
)
F0(2− µ) +

(2
3 − 2µ+ 2µ2 − 2

3µ
3
)
F0(1− µ)

+ µ3F0(−µ) +
(
−2

3 − 2µ− 2µ2 − 2
3µ

3
)
F0(−1− µ)

+
(4

3 + 2µ+ µ2 + 1
6µ

3
)
F0(−2− µ)

+
(

2− 2µ+ 1
2µ

2
)
F1(2− µ) +

(
−2 + 4µ− 2µ2

)
F1(1− µ) + 3µ2F1(−µ)

+
(
−2− 4µ− 2µ2

)
F1(−1− µ) +

(
2 + 2µ+ 1

2µ
2
)
F1(−2− µ)

+
(
−1 + 1

2µ
)
F2(2− µ) + (2− 2µ)F2(1− µ) + 3µF2(−µ)

+ (−2− 2µ)F2(−1− µ) +
(

1 + 1
2µ
)
F2(−2− µ)

+ 1
6F3(2− µ)− 2

3F3(1− µ) + F3(−µ)− 2
3F3(−1− µ) + 1

6F3(−2− µ) (49)

which is the analytical expression we used to evaluate (41) numerically.
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