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Abstract This paper is concerned with amoeba me-

dian filtering, a structure-adaptive morphological im-
age filter. It has been introduced by Lerallut et al. in a

discrete formulation. Experimental evidence shows that

iterated amoeba median filtering leads to segmentation-

like results that are similar to those obtained by self-
snakes, an image filter based on a partial differential

equation. We establish this correspondence by analysing

a space-continuous formulation of iterated amoeba me-

dian filtering. We prove that in the limit of vanish-

ing radius of the structuring elements, iterated amoeba
median filtering indeed approximates the partial dif-

ferential equation of self-snakes. This result holds true

under very general assumptions on the metric used to

construct the amoebas. We present experiments with
discrete iterated amoeba median filtering that confirm

qualitative and quantitative predictions of our analysis.
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1 Introduction

Since its beginning in the 60s [24], mathematical mor-

phology has developed into a powerful theory that pro-

vides useful operators e.g. for image denoising, struc-

ture enhancement, and shape simplification [13,28,29].
More recently, several adaptive approaches [5,23,33]

have been introduced in order to support the preserva-

tion of important image structures by denoising filters.

Introduced by Lerallut et al. [22,23], morphologi-
cal amoebas stand out as a class of morphological im-

age filters in which structuring elements adapt to im-

age structures with a maximum of flexibility. The key

idea of the amoeba construction is that the structur-

ing elements adapt locally to the variation of grey (or
colour) values, also taking into account the distance to

the origin pixel. Thereby, large deviations in the image

values are penalised, so that the amoebas may grow

around corners or along anisotropic image structures.
The resulting shape then takes the role of a structuring

element that can be used in conjunction with a variety

of morphological filters. Our investigation in this paper

concentrates on amoeba median filtering (AMF).

It is typical for the use of a classical median fil-
ter that it can be used iteratively. This is also true for

amoeba median filtering. Here, iterated application can

be carried out in different ways. In [22], a pilot image is

used to steer the iterated processes via an alternating
procedure. This works as follows. A smoothed version

of the original image f is used for constructing amoe-

bas for all pixels. The median filter is applied using the
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corresponding structuring elements. In subsequent iter-

ations, new amoebas are constructed in every step from

the previous filtered image. These amoebas are then

used as structuring elements to filter the original image

f . For the purpose of the present paper, we concentrate
instead on a more straightforward iterative procedure

for AMF that acts analogous to classical iterated me-

dian filtering [20,31]. In each iteration, the following

two steps are carried out pixelwise on the previous fil-
tered image: (i) amoeba construction, and (ii) median

filtering using the amoeba as structuring element.

For iterated median filtering with a fixed struc-

turing element, work by Guichard and Morel [12] has

brought out that, in the continuous-scale limit, it ap-
proximates the partial differential equation (PDE) ut =

|∇u| div
(

∇u/ |∇u|
)

, known as (mean) curvature mo-

tion [1]. In this sense, iterated discrete median filtering

with a fixed structuring element can be understood as
a specific discretisation of that PDE [18].

Iterated AMF simplifies images towards a cartoon-

like appearance with homogeneous regions separated by

sharp contours. Even corners are preserved fairly well,

in contrast to median filtering with a fixed structur-
ing element. Using PDE approaches, similar segmenta-

tions can be achieved e.g. by so-called self-snakes [27,

36]. These are filters that stand in close relationship to

curvature motion, with the difference that the evolution
is modulated by an edge-stopping function depending

on the local image gradient. Thereby the displacement

of edges is avoided, and edges are sharpened. In the

light of Guichard and Morel’s above-mentioned result it

is therefore natural to ask whether there exists a similar
correspondence between a continuous-scale limit case of

amoeba filters and a self-snakes-like PDE.

In the following, we address this question. We prove

that iterated amoeba filters can indeed be interpreted as

discrete approximations of curvature-based PDE image
filters. We discuss how different choices for the distance

measures involved in the amoeba definition influence

the limit case. In one of the settings we discuss, the

self-snakes PDE is recovered.
Our results extend the framework of known corre-

spondences between discrete and PDE formulations of

morphological filters. The study of these relationships

helps to gain a unified view on image filtering meth-

ods and to combine advantages of both approaches. In
particular, they also allow to use amoeba procedures as

discretisations of structure-adaptive PDE filters similar

to [18].

Preliminary results of this research have been pub-
lished in [35], where some coefficients in the derived

PDEs were unfortunately flawed due to a mistake in

the derivation, precluding the correct interpretation of

the results.1 In the present paper, we describe in more

detail the derivation of the PDE, thereby correcting also

the mistake from [35]. Moreover, while in [35] already

two amoeba metrics of potential interest were intro-

duced, most of the considerations were carried out only
for the simpler of the two, namely an L2 type (Eu-

clidean) metric. In the present paper, the analysis is

generalised to a larger class of amoeba metrics, thereby

also covering the practically interesting L1 metric case.

Related work. Median filtering in its non-adaptive

form goes back to Tukey [31] and became common as
a structure-preserving image filter in the 90s [10,20].

On the PDE side, (mean) curvature motion for im-

age smoothing has been proposed by Alvarez et al.

[1], already together with a “modulated” variant in

which the right-hand side of the original PDE is multi-

plied with a decreasing function of the image gradient.
Sapiro [27] proposed a modification of this idea, named

self-snakes, in which the edge-stopping factor is placed

within the divergence expression. While curvature mo-

tion smoothes in level-line direction only, Caselles et
al. [7] defined for image interpolation purposes a pro-

cess that smoothes exclusively in gradient flow line di-

rection, called adaptive monotone Lipschitz extension

(AMLE). The general principle to write curvature- and

diffusion-based image filter PDEs as mixtures of smooth-
ing along level line and gradient flow line directions,

which is also an important ingredient of our analysis,

has been established by Carmona and Zhong [6].

The representation of an image as a manifold em-

bedded in the product space of image domain and grey-
value range has been introduced in PDE-based image

filtering with the so-called Beltrami framework by Kim-

mel et al. [19] and Yezzi [37].

Since the seminal paper by Guichard and Morel [12]

further cross-relationships between discrete and PDE-
based image filters have been studied. For example,

van den Boomgaard [32] proved a PDE approximation

result for the Kuwahara-Nagao operator [21,26]. Di-

das and Weickert [9] studied correspondences between

adaptive averaging and a class of generalised curvature
motion filters. Barash [2] and Chui and Wang [8] con-

sidered PDE limits of bilateral filters [30].

With regard to future improvements in the algo-

rithmic realisation of amoeba filters, we mention also

digital distance transforms, in particular the work by
Borgefors [3,4] and Ikonen et al. [16,17].

Using a discrete filter as discretisation of a PDE

by virtue of an equivalence result like [12] can also be

1 In equation (9) of [35], a factor ∂x/∂z was omitted in both
integrands, see the corrected equation (14) in the present paper
and the erratum for [35] at http://www.mia.uni-saarland.de/

publications.
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seen in the context of other unconventional discretisa-

tions of continuous filters that are tailored to preserve

certain important qualitative properties of PDEs. This

includes, for example, mimetic discretisations [14,15] as

well as so-called nonstandard schemes [25].

Structure of the paper. The paper is organised as
follows. In Section 2 we describe the discrete algorithm.

Our main contribution, namely the derivation of PDEs

corresponding to AMF, follows in Section 3. In Sec-

tion 4, we show some numerical results that illustrate

the theoretical findings. The paper is finished with a
conclusion in Section 5.

2 The Discrete Amoeba Construction

The basic procedure is described in Lerallut et al.’s pa-

pers [22,23]. Here, we give a brief account of the al-
gorithm in the form we have implemented, which is

slightly modified in a few points that will be pointed

out in the sequel, compare also our conference paper

[35].

In the following, we work with images f whose pixels
are numbered by integers, such that fi denotes the grey-

value of the pixel with index i. The coordinates of this

pixel are denoted by (xi, yi). We distinguish the initial

image f from the iterated images u(n), where n denotes
the iteration number. For starting the iterative process,

we set u(0) := f . Using the amoebas whose construction

is described below as structuring elements, the standard

median filter is applied.

Description of the algorithm. For each pixel i0 with

(x, y)-coordinates (xi0 , yi0), an adaptive structuring el-

ement is determined as follows. We consider pixels i∗

within a prescribed maximal Euclidean distance ̺ of

pixel i0. The number ̺ represents the maximal size of

the shape of the amoeba, since it will also be used for

limiting the allowed amoeba distance. For the so pre-
selected pixels we consider paths (i0, i1, . . . , ik ≡ i∗)

that connect i0 with i∗ via a sequence of pixels in

which each two subsequent pixels ij, ij+1 are neigh-

bours. Among all these, we determine the shortest path

P with respect to the amoeba distance L(P ). If the
amoeba distance is below ̺ for P , the pixel i∗ is ac-

cepted as a member of the amoeba structuring element.

It remains to specify the amoeba distance as well as

the neighbourhood relation between subsequent pixels.
In [22,23], the amoeba distance is given by

L
(n)
L (P ) =

k−1
∑

m=0

1 + σ

k−1
∑

m=0

∣

∣

∣u
(n)
im+1

− u
(n)
im

∣

∣

∣ , (1)

where σ > 0 is a parameter that penalises large devia-

tions in grey-value data, and each pixel is required to

be in the 4-neighbourhood of its predecessor, i.e. a hor-

izontal or vertical neighbour. Note that this definition

involves the measurement of spatial distances by the

L1 distance (city-block metric), since the first sum in

(1) counts the pixels in the path P (without the start-
ing pixel i0). Moreover, spatial and tonal distances (i.e.

grey-value differences) are combined via an l1 sum.

In our implementation, we use a metric that bet-
ter approximates the Euclidean distance in space. To

this end, we use 8-neighbourhoods that include hori-

zontal, vertical, and diagonal neighbours, and use the

Euclidean distance on these pixel pairs. This results

in shorter paths compared to the procedure of Leral-
lut et al., as well, conceptually, in an improvement in

terms of rotational invariance. For the way how spatial

and tonal distances are combined we implement either

a Euclidean sum, or an l1 sum like in (1), which leads
finally to two alternative amoeba distance measures L2

and L1 given by

L
(n)
2 (P ) =

k−1
∑

m=0

√

√

√

√

√

(

xim+1
− xim

)2
+
(

yim+1
− yim

)2

+σ2
(

u
(n)
im+1

− u
(n)
im

)2 (2)

L
(n)
1 (P ) =

k−1
∑

m=0

(
√

(

xim+1
− xim

)2
+
(

yim+1
− yim

)2

+ σ
∣

∣

∣u
(n)
im+1

− u
(n)
im

∣

∣

∣

)

. (3)

While our implementation and experiments concentrate
on the metrics (2), (3), in our theoretical framework

these two cases will be embedded into a more general

context.

We remark that the distance measurements could be

improved: To better approximate the spatial Euclidean

distance one could use the digital distance transforms

discussed in [3], see also [4]. Alternative digital distance

transforms approximating spatial-tonal Euclidean dis-
tance or L1 distance and efficient algorithms are dis-

cussed in [16,17], for algorithms computing exact Eu-

clidean distance see [11].

3 Space-Continuous Analysis of Amoeba

Filtering

3.1 Space-Continuous Amoeba Model

For our further investigation, we need a space-

continuous formulation of AMF. We base this on the

representation of a (smooth) image u by its graph
Γ = Γu,σ := {p(x, y) = (x, y, σ u(x, y)) | (x, y) ∈ Ω}
where Ω ⊂ R

2 is the image domain, and σ a scal-

ing parameter for grey-values as in (1)–(3). Note that
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this embedding is analogous to the Beltrami framework,

compare [37]. The surface Γ is equipped with a metric

d which can be obtained by restricting the Euclidean

metric of the embedding space R
3, i.e.

d(p1, p2) ≡ d2(p1, p2)

= min

1
∫

0

√

x′(s)2 + y′(s)2 + σ2u′(s)2 ds , (4)

where the minimum is taken over all curves [0, 1] →
Γ that start in p1 := p(x1, y1) and end in p2 :=
p(x2, y2), and u is treated as a function of the curve

parameter, u(s) ≡ u(x(s), y(s)) such that u′(s) =

ux(x(s), y(s))x
′(s) + uy(x(s), y(s))y

′(s).

Alternatively, and closer to the setting of [22], one
can use an l1 sum of the Euclidean distance in space

and the grey-value distance,

d(p1, p2) ≡ d1(p1, p2)

= min

1
∫

0

(

√

x′(s)2 + y′(s)2 + σ |u′(s)|
)

ds . (5)

Of course, one could even use an lp sum for arbitrary
p ≥ 1; this would include in the limit p→ ∞ an amoeba

metric that measures the maximum of the spatial and

weighted tonal distance. For our theoretical considera-

tions, we will use as the most general setting a metric

d(p1, p2) ≡ dϕ(p1, p2)

= min

1
∫

0

ϕ
(

√

x′(s)2 + y′(s)2, σ |u′(s)|
)

ds , (6)

where ϕ is a homogeneous C2 function of degree 1,

strictly increasing in both variables, and fulfils the tri-

angle inequality ϕ(s+ v, t+ w) ≤ ϕ(s, t) + ϕ(v, w).

One step of amoeba filtering then reads as follows.
For a given location (x0, y0) in the image domain, an

amoeba structuring element A(x0, y0) is constituted by

all locations (x, y) for which d(p(x0, y0), p(x, y)) does

not exceed a given radius ̺. Typical shapes of amoeba
structuring elements with the metrics d2 and d1 are

shown in Figure 1. It is worth noticing that with the

metric d ≡ d2 from (4) the boundary ofA(x0, y0) crosses

the level line through (x0, y0) orthogonally and smooth-

ly, while e.g. with d ≡ d1 as given by (5) it has kinks at
the intersection points, giving the structuring element

a digonal overall shape in contrast to the elliptical con-

tour with (4).

Once the structuring element has been constructed,
the median of all grey-values of the unfiltered image

within the structuring element is taken, i.e. the value

µ whose level line (the curve along which u(x, y) = µ

reference
point

x0 y0(   ,   ) .

level line

amoeba contour

reference
point

x0 y0(   ,   ).

level line

amoeba contour

(a) (b)

Fig. 1 Amoeba structuring elements. (a) Typical amoeba with
metric d ≡ d2 from (4). (b) Typical amoeba with metric d ≡ d1
from (5).

holds) cuts A(x0, y0) into two parts of equal area. In

the filtered image, µ becomes the new grey-value at

location (x0, y0).

3.2 Derivation of a Partial Differential Equation for

Amoeba Median Filtering

We analyse the amoeba median filter now in a manner
similar to Guichard and Morel’s approach [12], assum-

ing that the amoeba metric is of type (6).

Without loss of generality, we assume that we are

dealing with the location (x0, y0) = (0, 0). We assume

further that u(x0, y0) = 0, and that the image gradient

at (x0, y0) is given by ∇u(x0, y0) = (α/σ, 0)T with some
positive α. Then σ u possesses the Taylor expansion

σ u(x, y) = αx+ βx2 + γxy + δy2 +O(̺3) (7)

within A = A(x0, y0), where we have used that x, y =
O(̺).

Consider now a value z = O(̺). We are interested

in the level line of u corresponding to the grey-value

z/σ, restricted to A. On this line, σ u(x, y) = z holds.

Due to the prescribed gradient direction of u, level lines

of u within A are roughly oriented in y direction. We
can therefore express the level line by writing x as a

function of y. To this end, we read σ u(x, y) = z as a

quadratic equation for x with the solutions

x1,2 =
1

2β

(

−α− γy

±
√

(α+ γy)2 − 4β(δy2 − z)
)

+O(̺3) . (8)

We drop the “−” solution which is outside A if ̺ is

small enough, and use the Taylor expansion
√
1 + v =



5

1 + 1
2v − 1

8v
2 +O(v3) to obtain

x =
1

2β

(

−α− γy

+ α

√

1 +
2γ

α
y +

4β

α2
z +

γ2

α2
y2 − 4βδ

α2
y2

)

+O(̺3)

=
1

2β

(

−α− γy + α+ γy +
2βz

α
+
γ2

2α
y2 − 2βδ

α
y2

− γ2

2α
y2 − 2βγ

α2
yz − 2β2

α3
z2
)

+O(̺3) (9)

and thus

x = x(y) = x(y, z) =

(

z

α
− z2β

α3

)

−zγ
α2
y− δ

α
y2+O(̺3) .

(10)

We will now compute the length of the level line
segment within A because it contributes to the weight

with which the value u = z/σ enters the computation

of the median µ. The end points of this segment are

obtained by equating dϕ(p(x0, y0), p(x(y), y)) to ̺.
Approximating dϕ by the corresponding distance

within R
3, this equation becomes ϕ

(

√

x(y)2 + y2, |z|
)

=

̺. Using the homogeneity of ϕ we can write ϕ(v, w) =

wϕ( v
w
, 1) =: wψ( v

w
). Thus we have |z|ψ

(√
x(y)2+y2

|z|

)

=

̺, and finally

x(y)2 + y2 = z2ψ−2

(

̺

|z|

)

, (11)

where ψ−2 denotes the square of the inverse function of

ψ.

We substitute (10) into the condition. Since y, z =
O(̺), we obtain
(

1− 2δ

α2
z

)

y2 − 2γ

α3
z2y +

(

1

α2
− ψ−2

(

̺

|z|

))

z2

− 2β

α4
z3 +O(̺4) = 0 , (12)

a quadratic equation for y. For its two solutions y1, y2
one easily checks that y1, y2 = O(̺) and y1+y2

2 = O(̺2).

The difference |y1 − y2| yields up to O(̺3) the de-
sired length L(z) of the level line segment within A. Us-

ing the solution rule for quadratic equations and keep-

ing track of the order of higher order terms, we find

that

L(z) = 2 |z|
√

ψ−2

(

̺

|z|

)

− 1

α2
×

×



1 +
δ

α2
z +

β

α4ψ−2
(

̺
|z|

)

− α2
z



+O(̺3) . (13)

To determine the median µ, we consider the equation

σµ
∫

Z−

L(ζ)
∂x

∂z
(ζ) dζ =

Z+
∫

σµ

L(ζ)
∂x

∂z
(ζ) dζ , (14)

where Z+ and Z− are the smallest positive and largest
negative values for which L(Z+) = L(Z−) = 0, and the

derivative ∂x
∂z

(ζ) = ∂x
∂z

(y1+y22 , ζ) is taken at the mid-

point of the corresponding level line segment, y1+y22 =

O(̺2). To interpret (14), we notice that each side inte-
grates the lengths L(ζ) of level line segments over some

range of grey-values, weighted with the inverse density
∂x
∂z

(ζ) of these level lines. As a consequence, each inte-

gral measures the area of the portion of the structuring

element with grey-values in its integration domain, and
(14) as a whole expresses the condition that the por-

tions with grey-values below and above µ have equal

area, which is exactly the characterisation of the me-

dian.

From (10) it follows that

∂x

∂z
(ζ) =

1

α
− 2β

α3
ζ +O(̺2) . (15)

For the integration bounds in (14) one has Z+,−Z− =

Z∗+O(̺3) with Z∗ = ̺/ψ(1/α) (remember that α > 0).

Provided that µ = O(̺2), the equality (14) can then
be transformed into

Z∗
∫

0

(

L(ζ) · ∂x
∂z

(ζ)− L(−ζ) · ∂x
∂z

(−ζ)
)

dζ

= 2σµL(0) · ∂x
∂z

(0) +O(̺4) . (16)

We multiply with α in order to eliminate the factor
∂x
∂z

(0) = 1
α
, and insert (15) to obtain

Z∗
∫

0

(

L(ζ)

(

1− 2β

α2
ζ

)

− L(−ζ)
(

1 +
2β

α2
ζ

))

dζ

= 2σµL(0) +O(̺4) . (17)

Up to higher order terms the left-hand side equals

4(δ − 2β)

α2

Z∗
∫

0

ζ2

√

ψ−2

(

̺

|ζ|

)

− 1

α2
dζ

+
4β

α4

Z∗
∫

0

ζ2
√

ψ−2
(

̺
|ζ|

)

− 1
α2

dζ

=
4̺3(δ − 2β)

α2ψ3(1/α)
I1(α) +

4̺3β

α4ψ3(1/α)
I2(α) , (18)
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where the two integrals

I1(α) :=

1
∫

0

ξ2Rψ(ξ, α) dξ (19)

I2(α) :=

1
∫

0

ξ2

Rψ(ξ, α)
dξ (20)

depend on the expression

Rψ(ξ, α) :=

√

ψ−2

(

1

ξ
ψ

(

1

α

))

− 1

α2
. (21)

Together with L(0) = 2̺+O(̺3), this implies

µ =
̺2

3σ

(

3δI1(α)

α2ψ3(1/α)
+

3β(I2(α)− 2α2I1(α))

α4ψ3(1/α)

)

+O(̺3)

(22)

which by virtue of (7) can be restated in terms of spatial
derivatives of u as

µ =
̺2

6

(

3uyyI1(σ ux)

(σ ux)2ψ3(σ−1u−1
x )

+
3uxx(I2(σ ux)− 2(σ ux)

2I1(σ ux))

(σ ux)4ψ3(σ−1u−1
x )

+O(̺)

)

. (23)

We have therefore obtained a result of the same type

as the equivalence from [12]:

One step of amoeba median filtering acts approxi-
mately like one time step of an explicit scheme for the

PDE

ut = g(|∇u|)uξξ + h(|∇u|)uηη (24)

with time step size τ = ̺2/6, where g and h are two

weight functions given by

g(s) =
3I1(σs)

(σs)2ψ3(1/(σs))
, (25)

h(s) =
3I2(σs)

(σs)4ψ3(1/(σs))
− 2g(s) . (26)

On the right-hand side, second order derivatives are

taken in the directions of the normalised gradient vector
η := ∇u/ |∇u| and the perpendicular vector ξ := η⊥,

the tangential vector of the local level line of u.

When ̺ tends to zero, the iterated amoeba me-

dian filter therefore converges to the PDE (24). The

first summand of the right-hand side of (24) can ob-
viously be interpreted as right-hand side of curva-

ture motion ut = uηη multiplied by an edge-stopping

factor g(|∇u|). The second summand corresponds to

an AMLE evolution [7] weighted with h(|∇u|). How-
ever, as h takes negative values, this term represents

rather an edge-enhancing backward AMLE, i.e. a one-

dimensional backward diffusion process.

While for general functions ψ the integrals I1 and

I2 may not be solvable in closed form, it is possible to

compute these integrals, and thereby the weight func-

tions g and h, numerically and thereby to implement a

numerical scheme for the evolution PDE (24). In cal-
culating the integrals, however, care must be taken of

the (weak) singularity of the integrands at ξ = 1. The

weight functions g and h for important special cases of

the amoeba metric will be discussed in Subsection 3.3.
Here we continue by establishing a further important

relationship between the two functions.

It is easy to show that the derivative of the integrand

of I1 w.r.t. α is bounded over the product [a, b]× [0, 1]

of closed intervals [a, b] (0 < a < b) for α and [0, 1] for ξ
such that it is uniformly continuous. It follows further

that its integral is uniformly convergent w.r.t. α. As a

consequence, one can compute I ′1(α) by differentiating

the integrand of (19), which yields

I ′1(α) =

1
∫

0

ξ2
∂

∂α
Rψ(ξ, α) dξ

=
ξ ψ−3

(

1
ξ
ψ
(

1
α

)

)

ψ′
(

1
α

)

α2Rψ(ξ, α)ψ′
(

ψ−1
(

1
ξ
ψ
(

1
α

)

)) . (27)

Using (25) with the quotient rule, (26) and (27) gives

sg′(s)− h(s) =
3ψ′

(

1
σs

)

(σs)3ψ4
(

1
σs

)I3(σs) (28)

where I3 stands for the integral

I3(α) :=

1
∫

0

(

3ξ2Rψ(ξ, α)

−
ξψ−1

(

1
ξ
ψ
(

1
α

)

)

ψ
(

1
α

)

ψ′
(

ψ−1
(

1
ξ
ψ
(

1
α

)

))

Rψ(ξ, α)

)

dξ . (29)

To evaluate this definite integral, we make use of the
antiderivative (primitive)

∫



3ξ2Rψ(ξ, α) −
ξψ−1

(

1
ξ
ψ
(

1
α

)

)

ψ
(

1
α

)

ψ′
(

ψ−1
(

1
ξ
ψ
(

1
α

)

))

Rψ(ξ, α)



 dξ

= ξ3Rψ(ξ, α) (30)

and find I3(α) = Rψ(1, α). By the definition (21)

of Rψ we have Rψ(1, α) =
√

ψ−2(ψ(1/α)− 1/α2 =
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Fig. 2 Edge-stopping functions in PDEs approximated by iter-
ated amoeba median filtering. For visualisation, σ is fixed to 1.

(a) Weight functions g(s) =
(

1 + s2
)

−1
for the curvature mo-

tion term (solid line), h(s) = −2s2
(

1 + s2
)

−2
for the shock term

(dashed line) from the PDE (24) using the Euclidean amoeba
metric (4). (b) Corresponding weight functions for the amoeba
metric (5).

√

1/α2 − 1/α2 = 0, which implies I3(α) = 0 and, by

virtue of (28), finally sg′(s) = h(s).

With the help of this equality, the second summand
in (24) can be rewritten as |∇u| g′(|∇u|)uηη. The latter
expression transforms further into 〈∇g,∇u〉.

As a result, we see that (24) is nothing else than the
self-snakes PDE [27,36]

ut = |∇u| div
(

g(|∇u|) ∇u
|∇u|

)

= g(|∇u|)uξξ + 〈∇g(|∇u|),∇u〉 (31)

with the edge-stopping function g defined by (25).

3.3 Important Special Cases

While we have obtained the equivalence result in Sec-
tion 3.2 in the fairly general setting of the amoeba met-

ric (6), we believe that the Euclidean and L1 amoeba

metric as given by (4) and (5), respectively, are the most

a

b

c

Fig. 3 The Cameraman experiment. (a) Original image.
(b) Iterated median filtering of (a), 3 × 3 stencil, 40 itera-
tions. (c) Iterated amoeba median filtering of (a) with Euclidean
amoeba distance, ̺ = 10, σ = 0.25, 4 iterations.
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a b

c d

e f

Fig. 4 Iterated amoeba median filtering of cameraman image with different parameters. The Euclidean amoeba distance was used
throughout this figure. Top row: (a) ̺ = 5, σ = 0.25, 4 iterations. (b) ̺ = 10, σ = 0.25, 1 iteration. Middle row: (c) ̺ = 10,
σ = 0.25, 4 iterations. (d) ̺ = 20, σ = 0.25, 1 iteration. iterations. Bottom row: (e) ̺ = 20, σ = 0.25, 4 iterations. (f) ̺ = 10,
σ = 0.05, 4 iterations.
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interesting cases for practical use. We will therefore now

discuss the application of the general derivation and re-

sults to these two cases.

Looking first at the Euclidean amoeba metric (4),
we see that it corresponds to setting ϕ(v, w) =√
v2 + w2 in (6). The corresponding function ψ is given

by ψ(v) =
√
1 + v2. In this case, the integrals I1 and I2

are easy to solve in closed form:

I1(α) =

√

1 +
1

α2

1
∫

0

ξ
√

1− ξ2 dξ =
1

3

√

1 +
1

α2
(32)

I2(α) =
1

√

1 + 1
α2

1
∫

0

ξ3
√

1− ξ2
dξ =

2

3
√

1 + 1
α2

. (33)

The weight functions in (24) are now given by

g(s) =
1

1 + s2
, h(s) =

−2s2

(1 + s2)2
(34)

for which sg′(s) = h(s) is evident. Both functions are

displayed in Figure 2(a). Note that in this case the

edge-stopping function in the self-snakes PDE (31) is

of Perona-Malik type with threshold 1/σ.

In the case of the L1 amoeba metric (5), we have

ϕ(v, w) = v + w and thus ψ(v) = 1 + v. Here, the

integrals I1 and I2 are best evaluated numerically. The

resulting weight functions g, h are shown in Figure 2(b).

The most prominent difference to the Euclidean case is
the faster decay of the edge-stopping function g from

its start at g(0) = 1 which means that small contrast

stronger dampens the evolution.

4 Experiments

We present two experiments that confirm the behaviour

suggested by the analytical results from the previous

section.

The Cameraman experiment. We use first an im-
age with a moderate amount of structures of different

sizes in order to investigate the effect of the different

parameters of the amoeba median filtering algorithm,

see Figure 4, and to compare results against self-snakes,

see Figure 5.

Figure 3(a) shows the original image. Subfigure (b)

depicts the steady state of standard median filtering

with a fixed (3× 3) structuring element. As usual with

median filtering, the shape of edges is rounded, and
small structures, even of high contrast, are lost. The

use of a larger non-adaptive structuring element will

distort the shape of important image features.

a

b

c

Fig. 5 The Cameraman experiment with self-snakes. An edge-
stopping function of Perona-Malik type (corresponding to the
Euclidean amoeba metric) is used. (a) Self-snakes filtering of
Fig. 3(a), σ = 0.25, time step 0.25, 67 iterations. (b) Same as in
(a) but 267 iterations. (c) Same as in (b) but σ = 0.05.
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In contrast, iterated AMF using the L2 amoeba dis-

tance, Figure 3(c), simplifies preferably structures of

low contrast, and retains more accurately the shape of

objects.

In Figure 4 we compare the results of iterated AMF

using the L2 amoeba distance together with varying pa-

rameters. We start with a relatively strong penalisation

of grey-value differences given by σ = 0.25, see (a–e).
This leads to a visible image simplification in which al-

most flat image regions are flattened even more. Edges

are sharpened but stay fairly well in place.

The degree of simplification naturally increases with

the number of iterations with fixed amoeba radius, as

from (b) to (c) and from (d) to (e), and with the amoeba
radius, as from (a) via (c) to (e). At the same time,

it can be observed that four iterations of AMF with

a given amoeba radius correspond reasonably well to

a single iteration with double amoeba radius, see the
image pairs (a)–(b) and (c)–(d). This matches the qua-

dratic relationship τ = ̺2/6 between amoeba radius

and evolution time of our PDE equivalence result.

When a very small σ is used, as in Figure 4(f), image

contrast has little influence on the amoeba shapes such

that the filter gets close to a non-adaptive median filter
with large structuring elements. The typical rounding of

corners and disappearance of small-scale structures can

be observed well. Translating to the approximated self-

snakes evolution, the edge-stopping function now takes
values close to 1, implying a smoothing behaviour very

similar to curvature motion.

For comparison, Figure 5 displays results of numer-
ical evaluation of the self-snakes PDE (31) with Eu-

clidean (Perona-Malik) edge-stopping function g(s) =

(1+σ2s2)−1. An explicit time-stepping scheme was used

wherein the curvature-motion component g(|∇u|)uξξ
was discretised using central differences, while the back-
ward AMLE contribution was discretised by an upwind-

like discretisation.

The parameters for Figure 5(a) have been adjusted

to match those of the AMF experiment in Figure 4(b).

Figure 5(b) is adjusted to match Figure 4(c) or (d). Fi-

nally, for Figure 5(c) the parameters of Figure 4(f) have
been translated to the self-snakes setting. Despite some

deviations in details, the overall similarity is clearly vis-

ible. As a rule, small details are handled worse by the

conventional PDE discretisation in Figure 5 which can
be attributed to the inevitable blurring effect of dis-

cretising derivatives.

In order to rely not only on visual judgements, we
compare AMF and self-snakes filtering results also by

quantitative measurements. One should be aware, how-

ever, that no known error measure is able to represent

adequately the visual similarity judgement of humans.

It is also important to note that the image filters under

consideration tend to create images consisting of ho-

mogeneous regions separated by sharp contours, where

small shifts of contours involve large grey-value changes
in many pixels in spite of little visual significance.

The first measure is themean absolute error (MAE).

For two images u = (ui,j), v = (vi,j) with a size of N

pixels it is given by

MAE(u, v) :=
1

N

∑

(i,j)

|ui,j − vi,j | . (35)

Being based on strictly local grey-value comparison,

MAE is prone to over-emphasise the above-mentioned

small contour shifts. Therefore we complement MAE by

a second measure which tries to mitigate this effect by
using statistics within small neighbourhoods, the mean

structural similarity index (MSSIM) [34]. It is defined

as the average of the structural similarity index (SSIM)

over all windows W of a prescribed size w within the

image domain. SSIM itself is computed as

SSIMW(u, v) :=
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)
(36)

where µu, µv denote the averages of u, v, respectively,

and σu, σv the standard deviations of u, v within W ,
and σuv the covariance of u and v within W . The con-

stants c1 and c2 are chosen as 0.01 ·2552 and 0.03 ·2552,
respectively, for images with grey-value range [0, 255].

We fix the window size to w = 4. MSSIM takes values

between −1 and +1 where +1 indicates perfect match.
Table 1 shows the MAE and MSSIM values for the

five AMF images from Figure 4(b–f) versus the three

self-snakes results from Figure 5, and of all these im-

ages versus the original cameraman image from Fig-
ure 3. It can be seen that also in terms of the quantita-

tive measurements the filtering results that correspond

theoretically are in comparatively good agreement. A

deviation is seen for AMF results from Figure 4(c) and

(d) which according to the measurements seem to be
slightly closer to Figure 5(a) than (b). This is, however,

not supported by the visual impression.

The Head experiment. In our second experiment

(Figure 6) we use an MR image of a human head which

abounds in details of different contrast and scale. The

original image is shown in Subfigure (a), a non-adaptive
median filter result in (b). In (c) and (d) iterated AMF

results both with L2 and L1 amoeba distance are dis-

played. It can be seen that both distance measures lead

to similar results. Moreover, we observe even clearer
than in the Cameraman experiment the good quality

of segmentation-type filtering that is achieved in spite

of the relative simplicity of the filtering approach.
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a b

c d

e f

Fig. 6 The Head experiment. Top row: (a) Original image. (b) Steady state of iterated median filter. Middle row: (c) Iterated
AMF, ̺ = 10, σ = 0.25, 10 iterations, L2 amoeba distance. (d) Same but with L1 amoeba distance. Bottom row: (e) Self-snakes
with edge-stopping function based on L1 metric (5), σ = 0.25, time step size τ = 0.25, 667 iterations. (f) Same self-snakes evolution
computed on a grid with spatial mesh size 0.25, σ = 0.25, τ = 0.015625, 10667 iterations.
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Table 1 Mean absolute error (MAE) and mean structural similarity index (MSSIM) for amoeba median filtering and self-snakes
results of the Cameraman experiment. Columns pertain to AMF results with parameters (̺; σ; iterations), rows belong to self-snakes
results with parameters (σ; τ ; iterations). Theoretically corresponding pairs are highlighted. Note that the MAE/MSSIM are 1.87/0.950

for Figure 4(a) versus (b), and 2.52/0.954 for Figure 4(c) versus (d).

MAE / MSSIM Fig. 3(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e) Fig. 4(f)
(original) (10; 0.25; 1) (10; 0.25; 4) (20; 0.25; 1) (20; 0.25; 4) (10; 0.05; 4)

Fig. 3(a) (original) 0.00 / 1.000 4.43 / 0.850 5.92 / 0.786 6.78 / 0.768 8.73 / 0.730 10.65 / 0.677
Fig. 5(a) (0.25; 0.25; 67) 5.28 / 0.810 2.88 / 0.942 3.68 / 0.939 4.21 / 0.923 6.36 / 0.893 7.65 / 0.844
Fig. 5(b) (0.25; 0.25; 267) 7.25 / 0.754 4.64 / 0.899 4.35 / 0.926 4.34 / 0.924 5.92 / 0.911 6.26 / 0.879
Fig. 5(c) (0.05; 0.25; 267) 9.57 / 0.699 7.08 / 0.845 6.45 / 0.881 5.72 / 0.895 6.32 / 0.906 4.31 / 0.932

We contrast the results once more with numerical
computations based on the self-snakes PDE, where we

use this time the edge-stopping function (25) corre-

sponding to the L1 amoeba metric (5). A precomputed

lookup table with linear interpolation was used for the
edge-stopping function.

Since the present test image contains a multitude

of small-scale structures, the differences between a con-
ventional PDE discretisation and amoeba median filter-

ing become evident: Figure 6(e) clearly demonstrates an

over-simplification due to numerical blurring effects. To

give an impression of the influence of the latter, we have

re-computed the self-snakes evolution on a finer grid:
Using a mesh size of 0.25 instead of 1, the resulting im-

age, Figure 6(f), retains much more structure and shows

in the coarser image structures a comparable degree of

simplification as the AMF result in Subfigure (d). How-
ever, small-scale structures still retain more contrast in

the AMF result.

5 Conclusion

In this paper we have presented an analysis of iter-

ated amoeba median filtering which demonstrates that

even highly adaptive discrete morphological image fil-

ters can be interpreted in terms of PDE-based evolu-

tions. An equivalence result has been proven that links
iterated amoeba median filtering to self-snakes, a well-

known PDE image filter with segmentation behaviour.

Thereby a clear explanation of qualitative properties

of iterated AMF was given, together with predictions
that could be experimentally checked. Our experiments

confirm the predictions of the theoretical investigation,

while demonstrating at the same time the difficulties of

conventional discretisations of the self-snakes PDE in

reproducing its favourable theoretical properties.

It appears therefore attractive to use iterated AMF

itself as a discretisation of the self-snakes PDE. To-
gether with equivalence results as by Guichard and Mo-

rel this may lead to establishing a dictionary of uncon-

ventional discretisations of image filtering PDEs which

retain advantageous qualitative characteristics of the
PDEs better than standard approaches.

This emphasises a common perspective on discrete

and PDE-based image filters, which may help to fuse

both formerly disparate branches of image processing.
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