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Abstract. For multivariate data there exist several concepts generalising the me-
dian, which differ by their equivariance properties w.r.t. transformations of the
data space (e.g. Euclidean, affine). In earlier work on the asymptotic analysis of
multivariate image filters built upon these concepts, it was observed that several
affine equivariant median filters approximate the same system of partial differ-
ential equations (PDEs). In this paper we discuss the equivariance properties of
multivariate medians and their associated PDEs in more detail. We discuss what
equivariance concept is the preferable generalisation of the very strong equiv-
ariance of the scalar-valued median (sometimes also denoted as morphological
equivariance) w.r.t. arbitrary monotone transformation. Moreover, we derive mul-
tivariate PDE evolutions systematically from equivariance properties. It turns out
that the approximation of the same PDE system by different affine equivariant
medians is no coincidence but a necessary implication of their equivariance prop-
erties. As a by-product, a more general class of multivariate PDE evolutions with
favourable equivariance properties arises.
Keywords: multivariate images – partial differential equations – multivariate me-
dian – affine equivariance – morphological filters

1 Introduction

Curvature motion can be described in numerous ways. First of all, it is a curve evolu-
tion that can be used for contours or shapes, and which can be stated e.g. by a partial
differential equation (PDE) for parametrised curves, and which is a gradient descent
for the curve length functional [1]. In a grey-value image, its simultaneous applica-
tion to all level lines gives rise to an image evolution which can be described by a PDE
acting directly on the intensities [9]. As such, it can be used for structure-preserving im-
age simplification. Moreover, it is closely related to median filtering: As proven in [4],
space-continuous median filtering with a disc-shaped structuring element of radius %
asymptotically approximates curvature motion up to evolution time %2/6. Remarkably,
both curvature motion and the median filter are equivariant under arbitrary monotone
intensity rescalings, i.e. their application commutes with such rescalings. As they share
this strong property with a larger set of fundamental morphological operations, this
property is also often called morphological equivariance (or invariance).
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In earlier work, several steps have been undertaken to generalise this framework to
multivariate (such as colour) images. Regarding median filtering, this requires a gener-
alisation of the median concept to multivariate data for which different proposals have
been made in literature since the beginnings of the 20th century, see e.g. [3, 7, 8, 10, 13]
and the overview in [11]. Among the differences between these definitions, equivari-
ance properties with regard to transformations of the data space play an important role
as they are decisive for the applicability of the concepts to particular categories of data.
Applications for the median filtering of multivariate images can be found e.g. in [6, 12,
19–21].

Asymptotic PDE approximation results for bivariate and multivariate median filter-
ing have been presented in [14, 16, 17], see also extensions to adaptive median filtering
with morphological amoebas as structuring elements [15]. A remarkable observation
was that affine equivariant multivariate medians, despite not coinciding as such, consis-
tently led to the same PDE evolutions, which suggests that common underlying princi-
ples of the PDE evolutions themselves related to equivariance can be worth considering.
This is the purpose of the present contribution.

Our contribution. We start by discussing the equivariance properties of multivariate
medians and their associated PDEs. Referring to the morphological equivariance of the
scalar-valued median and curvature motion PDE, we also address the question what is
the best multivariate generalisation of that concept.

We then turn to derive multivariate PDE evolutions in a principled way from equi-
variance properties modelled after multivariate median concepts. In fact, the asymp-
totic approximation of the same PDE evolution by an entire class of affine equivariant
multivariate median filters turns out to be necessary rather than just coincidential. For
Euclidean equivariance, partial results are obtained. Considering slightly relaxed re-
quirements, we find a more general class of multivariate PDE evolutions which deserve
further study.

Structure of the paper. The remainder of the paper is organised as follows. In Sec-
tion 2 we recall multivariate median concepts from literature. We collect known facts
about their equivariance properties. At the end of the section, we discuss what is the
proper counterpart of morphological equivariance in the case of multivariate data. Sec-
tion 3 lists existing results on the asymptotic approximation of PDEs by multivariate
median filters, emphasising the role of equivariance properties in their derivation. In
Section 4 we present the systematic direct derivation of bivariate image filtering PDEs
from equivariance properties, culminating in a re-derivation of the PDE system asso-
ciated with affine equivariant multivariate medians. Section 5 illustrates the theoretical
findings by numerical examples of PDE evolutions. A short summary in Section 6 ends
the paper.

2 Medians and Equivariance

In the following we shortly recall some definitions of multivariate medians and dis-
cuss their equivariance properties. Throughout this section we assume that X is a finite
multiset of values x ∈ Rd, d ≥ 2.
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2.1 Multivariate Medians

The L1 median of X is defined as the point µ ∈ Rd that minimises the sum of Eu-
clidean distances |µ − x| to all given points x ∈ X . Having been introduced in 1909
[13], this is the most widespread concept of multivariate median which has been in-
tensively studied since and has also been used in image processing [6, 12, 19–21]. We
remark that in exceptional situations (namely, if all data points are collinear, and X has
even cardinality), the L1 median is non-unique (set-valued) but do not detail this further
as it is generally not relevant for our further investigation. Also the following multivari-
ate medians can be set-valued in certain configurations which we will not detail further.

Oja’s simplex median [7] instead defines the median as the µ ∈ Rd that min-
imises the sum of simplex volumes |[µ,x1, . . . ,xd]| for all d-tuples of data points
x1, . . . ,xd ∈ X . Especially in the bivariate case d = 2 this means to minimise a
sum of triangle areas. Note that we denote by [. . .] the oriented simplex volume.

To avoid the high computational expense of the Oja median caused by the combina-
torial complexity of its definition, [8] proposed the transformation-retransformation
L1 median (TR-L1 median), see also [5]. This median is computed by first applying
an affine transform T toX to normalise the data points such that their covariance matrix
becomes the d × d identity matrix, then applying the L1 median and then applies the
inverse transform T−1 to yield the final median µ ∈ Rd. If all x ∈ X lie in a common
affine subspace of Rd, special consideration is needed such as applying the procedure
in the subspace only.

The half-space median [10] is the point µ ∈ X of maximal half-space depth w.r.t.
X . Here, the half-space depth is the minimum over all hyperplanes H 3 µ of the num-
ber of points x ∈ X that lie on one side of H . Parametrising hyperplanes with unit nor-
mal vectors n ⊥ H this can be expressed as µ = argmax

µ∈Rd
min

n∈Rd,|n|=1

∑
x∈X sgn〈x−

µ,n〉. Clearly, for a given multisetX the half-space depth cannot exceed b(#X−1)/2c
where # symbolises cardinality but this value is not always realised.

As the last multivariate median concept, we mention the convex-hull-stripping me-
dian [3]. It is obtained by an iterative process: Starting with X0 := X , one obtains Xi+1

from Xi, i = 0, 1, 2, . . ., by removing all points x that lie on the boundary of the convex
hull of Xi. This is repeated until one finds i with Xi 6= ∅ = Xi+1. Each point µ in the
convex hull of Xi then is a convex-hull-stripping median of the initial X .

2.2 Equivariance

Equivariance essentially describes commutativity between some operator acting in a
suitable space and transformations of this space. In the following we will distinguish
whether the set of admissible transformations is independent of the actual data set or
not, and speak of absolute or relative equivariance, respectively.

Basic definitions. Denote by S a suitable data space (e.g. Rd). An operator ϕ mapping
multisets X of values x ∈ S to single values ϕ(X ) ∈ S is called absolutely equi-
variant w.r.t. a set T of transformations T : S → S if for any multiset X ⊂ S and
any transformation T ∈ T one has ϕ(TX ) = Tϕ(X ). Note that TX here denotes
simultaneous application of T to all elements of X .
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An operator ϕ as stated before is called relatively equivariant w.r.t. T if T is a
set-valued operator that assigns to each multiset X ⊂ S a set T (X ) of transformations
T : S ′ → S where X ∪ {ϕ(X} ⊆ S ′ ⊆ S such that for any T ∈ T (X ) one has
ϕ(TX ) = Tϕ(X ).

Equivariance is in fact a decisive feature when it comes to the application of filtering
operators to given data. For example, application of an operator that possesses only
Euclidean equivariance to data which do not have a meaningful Euclidean structure is
dangerous as it implicitely imposes a random Euclidean structure on these data, and
uses it to draw conclusions. This difficulty has in fact been a driving force behind the
development of different multivariate median concepts in statistical literature.

The following equivariance properties of univariate and multivariate medians are
largely known from the literature, see in particular [11] and the references therein.

Univariate median. The classic median possesses two strong equivariance properties
that together form the essence of its outstanding role as a robust central position mea-
sure. First, it is equivariant under (the set of all) strictly monotonically increasing func-
tions T : R → R. This is the morphological equivariance mentioned in Section 1,
which is obviously an absolute equivariance property. Second, there is the radial scal-
ing equivariance: Given a finite multiset X ⊂ R with median µ, the median is un-
changed if each x ∈ X is replaced with some µ + c(x − µ) where the factors c > 0
can even be chosen independently for each x. As the set of admissible transformations
obviously depends on X , namely, of its median, this is a relative equivariance. Finally,
the univariate median is equivariant under reflections. Formally, this is also an absolute
equivariance property which we will shortly refer to as centrality.

Centrality, understood as equivariance under reflections at arbitrary hyperplanes, is
shared by all multivariate medians under discussion (intuitively, it is crucial for calling
an operator a median, or more generally a mean). Regarding other equivariances, the
multivariate medians vary, so we will shortly discuss each of them.

L1 median. This median is much more restrictive in terms of absolute equivariance.
It is equivariant under similarity transforms, i.e. under Euclidean transformations and
global rescalings. On the other hand, it fully implements radial scaling equivariance as
a relative equivariance property.

Oja and TR-L1 medians. Both medians are absolutely equivariant under arbitrary
affine transformations of the data space. Radial scaling equivariance holds for the Oja
median in configurations where it is uniquely defined. Unfortunately, radial scaling
equivariance is not preserved for the TR-L1 median. We remark instead the follow-
ing asymptotic property: Let a data multiset X = {x1, . . . ,xN} be given. If radial
rescaling weights ci for the data xi are chosen as ci = 1 + εCi with fixed Ci for the
individual points and a global variable parameter ε, then for ε → 0 the TR-L1 median
of the multiset X ′ = {c1x1, . . . , cNxN} deviates from that of X by O(ε).

Half-space median. The half-space median shares with the previously mentioned two
concepts the absolute equivariance under affine transformations. Moreover, as it de-
pends only on the situation of points relative to straight lines, i.e. whether some point
is located on the one or other side of that straight line, one can establish equivariance
w.r.t. a somewhat larger set of global transformations, namely all projective transforms
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of the projective space Pd ⊃ Rd that do not take any point from the convex hull of
the data multiset X to infinity. As the set of admissible transformations depends on X ,
this is a relative equivariance; we will refer to it as restricted projective equivariance.
Note that for sequences (X1,X2, . . .) increasing beyond limits, i.e. with convex hulls

conv(Xi) that fulfil
∞⋃
i=1

conv(Xi) = Rd, the corresponding sets Ti of admissible pro-

jective transforms converge to the set T ∗ of affine transforms, T1 ⊃ T2 ⊃ . . . with⋂∞
i=1 Ti = T ∗ because affine transforms are the only projective transforms that take no

finite point to infinity.
Radial scaling equivariance does in general not hold for the half-space median;

however, it is valid for those data multisets X for which the half-space median attains
the maximum possible half-space depth b(#X − 1)/2c.

Convex-hull-stripping median. The equivariance properties of the convex-hull-
stripping median resemble those of the half-space median as it possesses the same ab-
solute affine equivariance and relative restricted projective equivariance. Radial scaling
equivariance does not hold.

Generalisation of morphological equivariance. Looking back at the equivariance of
the univariate median (and many morphological operators) under arbitrary monotone
transformations of R, the question arises what is the best counterpart one can establish
for this in the multivariate case. For a tentative answer to this question, one can interpret
increasing monotone transformations of R as orientation-preserving maps: they do not
change the orientation of intervals, i.e. one-dimensional simplices [x, y]. Generalising
this to the multivariate case, one is naturally led to consider transformations T of Rd
that preserve the orientation of d-dimensional simplices [x0, . . . ,xd]. This boils down
to requiring that the situation of any point in Rd relative to any hyperplane must not
change. Postulating this for all points in Rd, one obtains affine equivariance. Alterna-
tively, restricting the requirement to the convex hull of a given data multiset, one obtains
again the restricted projective equivariance.

We suggest therefore to consider restricted projective equivariance as multivariate
morphological equivariance.

3 Space-Continuous Analysis

All definitions from Subsection 2.1 can be directly applied within median filtering pro-
cedures for discrete multivariate images. To study PDE limits, however, they need to be
transferred to space-continuous multivariate images represented by smooth functions
u : R2 → Rd. The selection of values around a given location x ∈ R2 is then ac-
complished using a compact neighbourhood of x as structuring element, and yields a
density of intensities γ : Rd → R+

0 where R+
0 denotes the set of nonnegative real num-

bers. Given the smoothness of u, γ has compact support and is absolutely integrable; it
may be normalised to total weight 1.

Medians of multivariate densities. With the exception of the convex-hull-stripping
median, the multivariate median concepts can easily be transferred to the case of com-
pactly supported absolutely integrable densities γ, essentially by replacing sums with
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integrals, see [17]. The convex-hull-stripping median is more difficult to transfer; as
shown in [18] the iterative process turns into a shape evolution process similar to the
affine morphological scale space [2]. As an asymptotic analysis of the final point of this
shape evolution has not been accomplished so far, we leave this median concept aside
for the further discussion in this subsection.

Limiting process. Modelled after [4], we consider disc-shaped structuring elements
D%(x) of radius % centered at x for the filtering of multivariate images u as specified
above. The multivariate median of the density γ of image values within D%(x) then
is the value of the median-filtered image M%u. Similar to [4], one obtains results of
the type lim

%→0

M%u(x)−u(x)
%2/6 = Lu with some (spatial) differential operator L which

justify to consider the time evolution PDE ut = Lu as the asymptotic evolution for the
respective multivariate median filter.

Equivariant normalisation. In [14, 16] asymptotic evolutions of multivariate median
filters were derived. In doing so, it was helpful to exploit the Euclidean and affine equi-
variance, respectively, of the underlying median operators in the data space as well as
the Euclidean equivariance in the image plane contributed by the structuring element
D% to normalise the function u around the location x.

In the bivariate case (d = 2) this is done as follows: First, translations in the image
plane and data space are used to shift x and u(x) to 0. Next, rotations around 0 in the
image plane and data space are applied to make the JacobianDu(0) diagonal and pos-
itive semidefinite (at generic locations: positive definite). We call the normalisation up
to this step Euclidean normalisation. Furthermore, if the median under consideration
admits affine equivariance, an affine transform in the data space can be used to rescale
the data (at non-degenerate locations) such that the Jacobian becomes the unit matrix.
We refer to this as affine normalisation. Note that this is the continuous counterpart of
the normalisation by the covariance matrix in the definition of the TR-L1 median.

In the case d > 2, essentially the same kind of normalisation can be applied; how-
ever, the Jacobian is now a d× 2-matrix and will be transformed in a way that its third
and further rows are zero, and the 2×2-submatrix consisting of the first two rows satis-
fies the requirements (diagonal, positive semidefinite, positive definite, unit matrix) as
specified before.

In the following we state the approximation results from [14, 16] for the normalised
cases; the general equations are obtained from these by applying the respective inverse
transforms to the PDE ut = Lu. For brevity we focus on the bivariate case (d = 2).

Normalised PDE approximations of multivariate median filtering. In [14] it was
shown that bivariate L1 median filtering of an image u : R2 → R2, (x, y)T 7→ (u, v)T

in Euclidean normalisation approximates the PDE system

ut = Q(ux/vy)uxx + (1−Q(ux/vy))uyy − 2(ux/vy)Q(ux/vy)vxy

vt = (1−Q(vy/ux))vxx +Q(vy/ux)vyy − 2(vy/ux)Q(vy/ux)uxy
(1)

with a coefficient function Q that can be stated in terms of elliptic integrals.
Specialising to the affine normalised situation, one has Q(1) = 1/4, thus

ut =
1
4uxx +

3
4uyy −

1
2vxy , vt =

3
4vxx +

1
4vyy −

1
2uxy , (2)
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which is the PDE system for the Oja and TR-L1 median filters in affine normalisation.
In [16] it was proven that bivariate half-space median filtering approximates the same
PDE system. For the L1, Oja and TR-L1 median filters also trivariate versions of these
PDE systems are found in [14].

Equivariance. The definitions of absolute and relative equivariance translate straight-
forward to the case of PDEs evolutions. As can be expected, the PDE evolutions for L1

median filtering such as (1) are equivariant under similarity transformations of the data
space; the PDE evolutions such as (2) for the other medians are affine equivariant. More-
over, the fact that (2) also corresponds to the half-space median lets expect restricted
projective equivariance which indeed holds. Remarkably, the just affine equivariance
of the Oja and TR-L1 medians is upgraded to restricted projective equivariance in the
asymptotic limit.

4 Derivation of PDE Evolutions by Equivariance

In this section we turn around to derive bivariate image filtering PDEs from equivari-
ance properties modelled after median filters. We start by assuming that u is a smooth
bivariate image evolution which is described by some PDE system ut = Lu. To re-
strict the PDE system, we impose conditions one by one, modelled after the properties
of median operators.

(I) Translation equivariance. This allows us to shift the location of interest to 0 with
u(0) = 0. We write down the spatial Taylor expansion up to second order at a non-
degenerate location 0. Suppressing for the moment the time parameter, and considering
only x = (x, y)T ∈ D%(0), we have

u(x, y) = α1x+ α2y +
1
2βx

2 + γxy + 1
2δy

2 +O(%3) ,
v(x, y) = α′1x+ α′2y +

1
2β
′x2 + γ′xy + 1

2δ
′y2 +O(%3)

(3)

where we have replaced first and second order derivatives of u at 0 with variables.
Noting that medians of u within D% are O(%2), we seek a PDE evolution that is

approximated by some filtering process in the limit % → 0 with step size O(%2). This
implies that the PDE evolution is described by a bivariate function p = (p, q)T of the
first and second order derivatives of u as

ut = p(α1, α2, β, γ, δ, α
′
1, α
′
2, β
′, γ′, δ′) . (4)

(II) Centrality. We impose first centrality in its weakest form, w.r.t. the reflection on
the origin, which implies

p(α1, α2, 0, 0, 0, α
′
1, α
′
2, 0, 0, 0) = 0 . (5)

(III) Scaling equivariance. With this requirement it follows that p is homogeneous of
degree 0 in α1, α2, α′1 and α′2 and of degree 1 in the remaining parameters,

p(λα1, λα2, µβ, µγ, µδ, λα
′
1, λα

′
2, µβ

′, µγ′, µδ′) = µp(α, β, γ, δ, α′, β′, γ′, δ′) (6)
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for λ > 0, µ > 0.

(IV) Euclidean equivariance. Now we can apply Euclidean normalisation. In the nor-
malised setting, we have α2 = α′1 = 0. By homogeneity, p in fact only depends on the
ratio α1/α

′
2 instead of the two individual variables.

(V) Affine equivariance. By affine normalisation we achieve α′1 = α2 = 1, thus only
the second order derivatives are left as parameters for p = p(β, γ, δ, β′, γ′, δ′).

We notice that in the affine normalised setting, there is a further degree of freedom:
Simultaneous rotations and reflections in the image (x-y) and data (u-v) plane leave
α1 = α′2 = 1 untouched but transform the second order derivatives. Thus, p must be
equivariant under these operations.

In particular, reflections on the y and v axes and similarly on the x and u axes imply

p(0, γ, 0, β′, 0, δ′) = 0 , q(β, 0, δ, 0, γ′, 0) = 0 (7)

as well as p(−β,−γ,−δ,−β′,−γ′,−δ′) = −p(β, γ, δ, β′, γ′, δ′). By reflection on the
diagonal x = y, we find q(β, γ, δ, β′, γ′, δ′) = p(δ′, γ′, β′, δ, γ, β), thus reducing the
problem to finding a single univariate function p. Using general rotations with rotation

matrix R =

(
cosϕ sinϕ
− sinϕ cosϕ

)
simultaneously in the x-y and u-v planes and taking

first-order derivatives w.r.t. the rotation angle ϕ yields the differential equations

pβ − pδ − pγ′ = 0 , pβ′ − pδ′ − pγ = 0 (8)

for p. Furthermore, second derivatives w.r.t. ϕ yield the additional conditions pγ =
pβ′ = pδ′ = 0, from which together with (7) we see that p is a 1-homogeneous function
of only β, δ and γ′. According to Euler’s Homogeneous Function Theorem p can be
represented in the form

p(β, δ, γ′) = βpβ + δpδ + γ′pγ′ . (9)

Simplifying (9) with (8) we obtain the following intermediate result.

Proposition 1. A bivariate PDE evolution in affine normalisation which is associated
to a local filtering operator with centrality property and affine equivariance can only
be of the form

ut = p(uxx, uyy, vxy) , vt = p(vyy, vxx, uxy) (10)

with a 1-homogeneous function p that satisfies

p(β, δ, γ′) = (β + γ′)pβ + (δ − γ′)pδ . (11)

(VI) Relative equivariances. For further specification we need an additional require-
ment that can be derived from several relative equivariances. If we assume radial scaling
equivariance, we can in particular replace (in the normalised setting under considera-
tion) u(x) for each x ∈ D% with the scalar multiple (1 + εx)u(x) for some small ε
and require that ut remains unchanged. This implies

p(β + 2ε, δ, γ′ + ε) = p(β, δ, γ′) . (12)
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Unfortunately, as discussed earlier, radial scaling equivariance does not hold for all mul-
tivariate median concepts in our investigation. Among the affine equivariant medians,
it holds only for the Oja median (where the restriction to unique cases is no problem
in the space-continuous case at generic locations). However, (12) can be derived alter-
natively from restricted projective equivariance (as it holds for the half-space median).
Moreover, it can be shown that also the asymptotic radial scaling equivariance which
holds for the TR-L1 median is sufficient to ensure (12) since the effect of the radial
rescaling with (1 + εx) for x ∈ D% on p is of order O(%ε) and thereby vanishes in the
limit %→ 0.

Inserting (11) into (12) we obtain (β+γ′+3ε)pβ+(δ−γ′− ε)pδ = (β+γ′)pβ+
(δ − γ′)pδ and finally

pδ = 3pβ . (13)

Together with (11) this yields p(β, δ, γ′) = (β + 3δ − 2γ′)pβ which implies that pβ is
constant and p a linear function. The single degree of freedom is the choice of pβ which
amounts to a time rescaling. The consequence is our second result, summarised in the
following proposition.

Proposition 2. A bivariate PDE evolution in affine normalisation as in Prop. 1 which
additionally satisfies asymptotic radial scaling equivariance or restricted projective
equivariance is necessarily of the form (2).

We remark that Prop. 2 explains the coincidence of the PDE asymptotics of Oja, TR-
L1 and half-space median in the bivariate case. Generalisations on one hand to trivariate
and generally multivariate evolutions, and on the other hand to Euclidean equivariance
are part of ongoing work.

The result of Prop. 1 states a more general class of affine equivariant PDE evolutions
that are in a sense close to median-associated ones but without the last requirement of
relative equivariances. Functions p that satisfy (11) for real β, δ, γ′ with β+γ′ > 0 and
δ − γ′ > 0 are e.g. given by

p(β, δ, γ′) =
(
(β + γ′)s + ϑ(δ − γ′)s

)1/s
(14)

with arbitrary parameters ϑ > 0, s > 0, which includes the linear case for s = 1. To be
usable for the PDE image filter, however, p needs to be defined on the entire parameter
space (β, δ, γ′) ∈ R3. Such an extension is obviously possible for some values of s,
particularly s = m or s = 1/m for odd natural numbers m. We believe that this larger
class of PDE evolution deserves further study, and include some numerical examples in
the next section.

5 Experiments

While the emphasis of this paper is largely on theory, we want to give an impression of
the effect of the filters under consideration by a numerical example. Although practical
relevance is expected rather for multivariate images with at least three channels such
as RGB colour images or diffusion tensor images, it appears appropriate to stay in the



10 M. Welk

a b c d

e f g h

Fig. 1. Filtering of a bivariate colour image (512× 512 pixels). a Colour image sailboat reduced
to yellow-blue colour space. b Result of half-space median filtering with a discrete disc of radius
2 as structuring element, 15 iterations. c Corresponding evolution by the PDE system (10), (14),
s = 1, ϑ = 3, up to time T = 2.5 (60 time steps of size 0.041665); same evolution as (2) except
for speed-up by a factor 4. d Same as c but with heuristic anti-diffusion to reduce numerical
dissipation; see text. e PDE evolution (10), (14), s = 3, ϑ = 3, T = 2.5 (same time steps as c,
d). f Same as e but with heuristic anti-diffusion. g PDE evolution (10), (14), s = 1/3, ϑ = 3,
T = 0.8333 (1000 time steps of size 0.0008333). h Same as g but with heuristic anti-diffusion.

bivariate setting in accordance with the analysis presented. As an example of a bivari-
ate image we therefore present a colour image where the RGB colour space has been
reduced to a yellow-blue (YB) colour space by averaging the red and green channels.
All algorithms were implemented in C++.

Numerical aspects. Whereas the PDE system (10), (14) is stated in affine normalisa-
tion, practical computation by a finite-difference scheme is best done by applying only
Euclidean normalisation to a 3 × 3 patch and evaluating the PDE system therefore in
the form

ut = p(uxx, uyy, vxy/vy) , vt = p(vyy, vxx, uxy/ux) . (15)

Still, as already noted in [14], a straightforward discretisation by central differences is
unstable. In [14, App. 6] a stable numerical scheme was devised that uses in particular
min-mod stabilised upwind discretisations for the terms involving uxy/ux, vxy/vy . We
use this scheme with minor adaptations to suit the more general function p from (14).

As finite difference discretisations of PDEs tend to add undesired blur to the results,
it was proposed in [14] to modify the coefficients of the PDE evolutions by an anti-
diffusion term which can be safely done just by reducing the coefficients of uxx, uyy ,
vxx, vyy by a uniform amount. We follow this recommendation and include exemplary
results with this compensation.
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Exemplary results. Based on the original image shown in Fig. 1a, we show first a
result of iterated half-space median filtering, Fig. 1b, using the implementation from
[16]. Frame c shows the result of the corresponding PDE system (10), (14) with s = 1
at the appropriate evolution time, whereas frame d represents the same with the anti-
diffusion compensation. Frames e–f show visually similar results obtained with s = 3
instead of s = 1. In frames g–h we used s = 1/3. To achieve a visually comparable
degree of image smoothing, adjustments were required both for the total evolution time
(reduced by a factor of 3) but also for the time step size (reduced by a factor of 50,
necessitating dramatically more iterations).

Still, the computation time for all of the PDE evolutions is much less than that for
the half-space median computation. With our C++ implementations that were in no way
optimised for performance, computation times for single-core computation on an AMD
Phenom(tm) II X6 1100T processor (manufactured around 2011) running at 3.2 GHz
under Ubuntu Linux 20.04 ranged from seconds to minutes for the PDE evolutions
whereas more than two hours were necessary for the half-space median filtering. We
believe that significant speedups are possible by more efficient implementations.

6 Summary and Conclusions

In this paper we have re-visited previous results on multivariate image filtering PDE
systems associated with median filters with special emphasis on their equivariance prop-
erties. We have presented a systematic derivation of such PDE systems on the basis of
equivariance properties, for the time being in the bivariate case. As a result, we showed
that the approximation of the same PDE system by several affine equivariant median
filtering processes is no coincidence, but a necessity. As a by-product we have iden-
tified a more general class of PDE evolutions with homogeneous functions of second
derivatives as right-hand sides that appear to be worth further study.

Ongoing work is directed at generalising the result of this paper to the general mul-
tivariate situation including practically meaningful cases like RGB colour images and
diffusion tensor images. We also aim at extending the analysis to the case of Euclidean
equivariance where part of our present line of argument cannot be transferred straight-
forwardly. As mentioned before, the larger class of homogeneous evolutions described
above is of interest for further investigation, too.

Another direction for future research is the adequate interpretation of the PDE sys-
tems in question. The clear geometric intuition of curvature flow in the univariate case
is so far not reflected in an appropriate understanding of the multivariate PDE evolu-
tion. A geometric interpretation will definitely strengthen the theoretical framework and
promote applicability.
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