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Abstract. The spatial derivatives in Hamilton-Jacobi partial differential equa-
tions for the definition of morphological operations such as dilation and erosion
for grey-value images are replaced by fractional derivatives of arbitrary positive
order. Focus is laid on geometric invariance with respect to reflections and rota-
tions so that directional bias towards the coordinate directions is avoided. Dis-
cretisation of directional fractional derivatives via truncated general power series
ultimately leads to an optimisation problem for the advection direction. We nu-
merically compare the proposed fractional morphological operations with con-
ventional counterparts and a simpler fractional-order alternative on grey-value
images to show interesting phenomena and gain insights into the effects of the
non-local nature of the fractional derivatives which merit further investigation.
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1 Introduction

Morphological dilation and erosion for continuous-scale grey-value images u : R2 →
R can be described by the well-known Hamilton-Jacobi partial differential equations
(PDEs)

ut = |∇u| (dilation), ut = −|∇u| (erosion) (1)

where |∇u| is the Euclidean norm of the spatial gradient of u, see e.g. [3, 4, 9]. Using
a given image f as initial condition u(t = 0) = f , these PDEs yield for t > 0 di-
lated/eroded variants of f with disc-shaped structuring elements of radius t. It is worth
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noticing here that ±|∇u| are the maximum and minimum, respectively, among the di-
rectional derivatives of u in all possible spatial directions, see also eqs. (26), (27) of
[4]. Therefore (1) are advection PDEs in which the advection direction is determined at
each location is that of the greatest or smallest directional derivative.

Several generalisations and modifications of these PDEs have been studied in liter-
ature. In this work, we are interested in studying variants in which the spatial gradient
is replaced by fractional derivatives.

Fractional-order differentiation goes back to the very origins of calculus itself as
already Leibniz has discussed how to do, say, a half-order derivative instead of integer
derivative orders, see [15] for a historical overview and [15, 18] for detailed definitions
and derivations. One approach to defining a fractional derivative of a (absolutely and
square integrable and sufficiently regular) function f : R → R is based on the Fourier
transform F [f ] : R → C of f and the identity F [∂k

xf ](ξ) = (iξ)kF [f ](ξ) for deriva-
tives of integer order. With the disambiguation iα := exp(iαπ/2) (principal value)
one can define ∂α

x f := F−1[(iξ)αF [f ]] for real α > 0. Alternative definitions are the
Riemann-Liouville derivative given by an integro-differential operator,

∂α
x f(x) =

1

Γ (k − α)
∂k

xZ

−∞

(x− y)k−α−1f(y) dy , k := ⌊α⌋+ 1 , (2)

with Γ denoting the standard gamma function, and ⌊α⌋ denoting the greatest integer not
greater than α, or the similarly defined Caputo derivative. All three definitions coincide
in those cases where all of them are defined. For numerical evaluation on sampled data,
discretisations are available, with the Grünwald-Letnikov derivatives (see Section 2) as
a prominent example.

Unlike ordinary derivatives, fractional derivatives of non-integer order are non-local
in that their values at some location x do not depend just on f in a neighbourhood of x
but on its values on the entire real half-axis (−∞, x]. In applications, this is a reasonable
choice for derivatives w.r.t. the time coordinate which then obey temporal causality.
Indeed, time-fractional differential equations have proven useful in applications such as
diffusion in porous media [8] or damped oscillators [2, 20], where the non-locality acts
to model memory effects or delayed responses. When considering fractional derivatives
in space, e.g. for space-fractional diffusion [5], preference for one real half-axis is often
unphysical, leading to the consideration of symmetrised fractional derivative concepts
[19]. Still, space-fractional PDEs in two or three spatial dimensions are mostly based
on combining 1D fractional derivatives w.r.t. coordinate directions [5, 17, 23, 27].

Fractional differential equations have also been considered in the context of image
processing [1, 26]. On one hand, time-fractional differential equations can profit from
the same benefits of modeling memory or delay by causal time derivatives, see e.g. [13]
for time-fractional morphological PDEs. On the other hand, space-fractional derivatives
allow to introduce an interesting kind of controlled non-local behaviour into image
processing. Space-fractional derivatives have been used e.g. for edge detection [22],
denoising and image enhancement [11, 12, 29], regularisation [6, 7, 24], segmentation
[21] or image super-resolution [10].

Many of these approaches use symmetric space-fractional derivatives; however, the
majority of works we are aware of adhere to the use of 1D fractional derivatives in
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coordinate directions. Given the importance of spatial symmetries in image processing,
we question this approach: Whereas ordinary derivatives in two or three dimensions
can be broken down to derivative operators w.r.t. the coordinates, proceeding similarly
for non-local fractional derivatives can be expected to introduce strong directional bias
towards the coordinate directions.

In an attempt to mitigate these problems, some authors introduce additional direc-
tional derivatives in 45 degree steps [11, 21, 26]. In [25], the approach is refined by
using 22.5 degree steps by applying a 1D fractional derivative discretisation to a series
of intensity values interpolated from grid values.

A rare instance of consequently envisioning rotational invariance is found in [7]
where fractional powers of the negative Laplacian are computed via the Fourier domain
and used as rotationally symmetric operators for fractional diffusion and regularisation.

Our contribution. We establish a framework for discrete approximations of space-
fractional derivatives for 2D morphology with emphasis on geometric invariance w.r.t.
reflections and rotations. In particular, we propose a novel concept of directional frac-
tional derivatives in arbitrary directions from which we construct fractional counterparts
of the r.h.s. of Hamilton-Jacobi equations for dilation and erosion. We discuss qualita-
tive properties of the resulting fractional dilation and erosion operations. In particular,
the use of space-fractional derivatives extends the classical concept of morphology as
shape-based processing in the sense that due to their non-locality, the resulting filters
look to a certain extent below the surface of the evolving shapes. We present exper-
iments to confirm and extend these findings, including also composed operators such
as opening, closing and morphological shock filters, juxtaposing them with standard
morphological operations. As we are interested in the potential of space-fractional mor-
phology, comparisons with time-fractional approaches are not in our scope here.

Structure of the paper. In Section 2, we recall the discretisation of fractional deriva-
tives using the Grünwald-Letnikov formula. We discuss how symmetry can be incorpo-
rated when using fractional derivatives for morphological PDEs which is then applied
to 1D signals first. Then, the extension to the 2D case is derived based on a truncated
general power series and an optimisation over advection directions. In Section 3, nu-
merical results for dilation, erosion, opening, closing, and shock filters for a variety of
grey-value images with different fractional derivative orders are presented to illustrate
their effects. A short conclusion and outlook to future work is given in Section 4.

2 Fractional Derivatives

We start by recalling essential facts on 1D fractional derivatives with emphasis on the
specifics of morphological image processing. Based on this, we then propose a 2D
extension fitting this purpose.

2.1 The 1D Case

Standard (backward) Grünwald-Letnikov derivatives. The basic form of a Grün-
wald-Letnikov discretised derivative of order α > 0 for a sampled 1D signal with
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spatial step size h and values ui = u(x0 + ih) is

[∂α
x−u]i = h−α

∞X

k=0

(−1)k
�
α

k

�
ui−k (3)

with the binomial coefficients

α
k

�
:= α(α−1)···(α−k+1)

k! . For a detailed derivation see
e.g. [15]. The coefficients of (3) can be read off the power series

(1− x)α =

∞X

k=0

(−1)k
�
α

k

�
xk . (4)

In the case of integer order α > 0 (where the series is finite) this is a direct conse-
quence of the fact that multiplication of polynomials or power series is equivalent to
a convolution of their coefficient sequences and thus to the iterated convolution of the
backward finite difference discretisation [∂x−u]i = (ui − ui−1)/h. For non-integer or-
ders the power series thus offers a natural way to interpolate between the integer order
convolutions.

Under suitable regularity assumptions, the Grünwald-Letnikov derivative converges
to the continuous-scale (e.g. Riemann-Liouville) derivative as the grid is refined, h → 0.
Moreover, for positive integer order α one has a backward-difference approximation for
the ordinary derivative ∂α

x u(x).
For non-integer α, the derivative is non-local, and in the given form, it looks back-

ward on the real axis. In applications, this is a reasonable choice for time-fractional
differential equations which then are guaranteed to obey temporal causality. When aim-
ing at spatial fractional derivatives for image processing applications, however, it is
paramount to ensure compatibility with spatial symmetries and therefore to consider
also forward-looking and possibly spatially symmetric derivatives.

Forward and symmetric fractional derivatives. In principle, forward-looking deriva-
tives can be defined by reverting the real axis, i.e. applying the derivatives as be-
fore to the function ũ(x) := u(−x). However, noticing that for ordinary derivatives
of integer order α one has ∂α

x ũ(−x) = (−1)α∂α
x u(x), the question arises how to

treat the sign factor (−1)α for non-integer α. Defining a forward-looking derivative as
∂α
x+u(x) = (−1)α∂α

x−ũ(−x) (where (−1)α requires disambiguation, e.g. as exp(iπα))
makes it complex-valued even for real-valued functions which is cumbersome for ap-
plications. Alternatively, one can drop the complex sign factor. One can then either
impose even symmetry for all orders α by ∂α

x+u(x) = ∂α
x−ũ(−x), or impose odd sym-

metry for all orders α by ∂α
x+u(x) = −∂α

x−ũ(−x). The first choice, even symmetry,
ensures correct embedding of derivatives of even integer order, ∂α

x+u(x) = ∂α
x u(x),

but leads to a sign-reversal for odd integer orders, ∂α
x+u(x) = −∂α

x u(x). The odd sym-
metry choice correctly embeds odd integer orders but involves sign reversal for even
integer orders. We remark that the even-symmetric variant can be associated with the
pseudo-differential operators −(−∂xx)

α/2, compare [7].
Symmetric derivatives can either be obtained by combining backward and forward

derivatives or by directly generalising central finite difference approximations. The dif-
ficulties regarding the choice between even and odd symmetry remain and lead to dif-
ferent models proposed in literature [14, 16, 19, 24, 28].
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Fig. 1. Dilation PDE r.h.s. of simple discrete 1D signals with spatial step size 1. Top to bottom:
(a–d) Heaviside signal; (e–h) high impulse of width 5; (i–l) low impulse of width 5. Left to right:
(a, e, i) signal f ; (b, f, j) upwind approximation of |fx|; (c, g, k) fractional derivative |∂1.5

x f(x)|+;
(d, h, l) fractional derivative |∂0.75

x f(x)|+. Horizontal axis shows space coordinate, vertical axis
shows intensity.

Fractional derivatives for morphological PDEs. Fortunately, for our goal of general-
ising PDEs of mathematical morphology we can avoid the aforementioned problems.
The quantity we actually want to generalise is |∂xu| = max{∂xu,−∂xu}, and it is
commonly discretised in upwind schemes by one-sided finite differences, switching
between forward and backward differences based on sign. Defining the forward deriva-
tive as ∂α

x+u(x) = −∂α
x−ũ(−x), we have |∂α

x u(x)|+ := max{−∂α
x−u(x), ∂

α
x+u(x)}

as a generalisation of |∂xu| that always looks into the half-axis from which higher
values are advected, thus suitable for morphological dilation, or |∂α

x u(x)|− :=
max{∂α

x−u(x),−∂α
x+u(x)} which always looks into the half-axis from which lower

values are advected, as appropriate for morphological erosion. We can therefore write
down the 1D space-fractional morphological dilation PDE ut = |∂α

x u(x)|+ and the 1D
space-fractional morphological erosion PDE ut = −|∂α

x u(x)|−.

2.2 Behaviour of Fractional Dilation in 1D

We analyse the responses of the r.h.s. of the 1D space-fractional dilation equation ut =
max{∂α

x+u,−∂α
x−u} to discrete Heaviside functions (ui = 0 for i < 0, ui = 1 for

i ≥ 0), high flip impulses (ui = 1 for 0 ≤ i ≤ w, ui = 0 otherwise) and low flip
impulses (ui = 0 for 0 ≤ i ≤ w, ui = 1 otherwise). Fractional derivative stencils were
truncated at distance 100, which is far beyond the length of all involved structures and
ensures negligible truncation errors.

We first consider α = 1. In this case, the fractional derivative becomes a standard
derivative which is approximated by an upwind approximation. This leads to a peak of
size 1 shifted one unit to the left for the Heaviside function (see Fig. 1(b)). For the high
flip impulse of size 5, we obtain two peaks of size 1. Here, the left peak is shifted one
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unit to the left whereas the right peak is shifted one unit to the right (Fig. 1(f)). For the
low flip impulse of size 5, we also obtain two peaks of size 1. However, the left peak is
shifted one unit to the right whereas the left peak is shifted one unit to the left (Fig. 1(j)).

Next, we consider the case α ∈ (1, 2). As an example, we choose α = 1.5. Here,
the situation for the Heaviside function leads to the same result as for α = 1 except
that there is an additional positive decaying tail one unit right at the discontinuity of
the Heaviside function (see Fig. 1(c)). This leads to an enhancement of an edge and a
violation of the maximum principle. For the high impulse, we obtain the same peaks
as for α = 1 with the exception that the peaks are slightly larger than 1. Between the
two peaks smaller peaks arise (Fig. 1(g)), again entailing a violation of the maximum
principle. For the low impulse, we obtain the same two peaks as for α = 1 and the
same positive decaying tails to the left of the left peak and to the right of the right peak,
respectively (Fig. 1(k)). Inbetween the two peaks, the results get negative. Hence, the
minimum principle is violated. In total, the expected effects for dilation are enhance-
ment of edges and the enhancement of thin bright line structures. Further, dilation is
slowed at thin dark line structures which preserves them longer. Overall, we observe
some reduction of numerical dissipation when compared to standard dilation (α = 1).

Finally, we consider the case α ∈ (0, 1). We choose α = 0.75 as an example. For
the Heaviside function, we obtain a peak left to the discontinuity with a decaying tail on
the left of this peak. Interestingly, we also obtain a tail to the right with small negative
decaying values (see Fig. 1(d)). Hence, the minimum principle is violated. For the high
impulse, we obtain two peaks left and right of the discontinuity, but the height is smaller
than one. We observe two decaying tails to the left of the left peak and to the right of
the right peak. Inbetween the two peaks, we obtain negative values (Fig. 1(h)). For the
low flip impulse, we obtain the same two peaks as for α = 1 with the exception that
inbetween the peaks mass larger than zero appears (Fig. 1(l)). In total, the expected
effects for dilation are contrast reduction as well as increased blurring effects.

2.3 Extension to 2D

As we set out to generalise the PDEs of morphological dilation and erosion in which the
gradient norm acts to maximise or minimise, respectively, over directional derivatives,
we are led to devise as the first step a fractional counterpart of a directional derivative
in direction of a unit vector eφ := (cosφ, sinφ)T, φ ∈ [0, 2π].

For φ ∈ [0,π/2] a spatial discretisation of the first derivative in the direction of eφ
with forward finite differences in x and y direction reads as

[∂eφ
u]i,j = cosφ

ui+1,j − ui,j

h
+ sinφ

ui,j+1 − ui,j

h
. (5)

By a similar reasoning as in the one-dimensional case, a discretised derivative of order
α in the same direction is obtained as

[∂α
eφ
u]i,j = h−α

∞X

k,l=0

dαφ;k,lui+k,j+l (6)
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where the coefficients dαφ;k,l are those from the power series in two variables

−((cosφ+ sinφ)− cosφ · x− sinφ · y)α =

∞X

k,l=0

dαφ;k,lx
kyl , (7)

dαφ;k,l = (−1)k+l+1

�
α

k, l

�
(cosφ)k(sinφ)l(cosφ+ sinφ)α−k−l , (8)

k, l = 0, 1, . . . , φ ∈ [0,π/2] (9)

with the trinomial coefficients

α
k,l

�
:=


α
k

�
α−k
l

�
.

This is of course an infinite-size stencil that needs to be cut off at some finite length.
Due to the rather slow decay of the coefficients with k and l reasonable stencil sizes
involve a significant cut-off error which needs to be compensated to ensure that the
numerical approximation of the fractional derivative does not incur an unnatural depen-
dency on absolute intensity levels. We do this by adjusting the coefficient dαφ;0,0, i.e.
we use dαφ;k,l for k = 0, . . . ,K, l = 0, . . . , L, (k, l) ̸= (0, 0) and replace dαφ;0,0 with
d̃αφ;0,0 = −PK,L

k,l=0;k+l≥1 d
α
φ;k,l.

For directions φ ∈ [π/2, 2π] the same type of stencil is applied in the other quad-
rants, i.e. replacing ui+l,j+l in (6) with ui+k,j−l, ui−k,j+l or ui−k,j−l as appropriate.
On quadrant boundaries, the discretisations from both adjacent quadrants collapse to
the same 1D Grünwald-Letnikov discretisation.

In the terms of our discussion of even/odd symmetry of fractional derivatives in the
1D case, we notice that [∂eφu]i,j behaves as an odd-symmetric generalisation since one
has [∂−eφ

u]i,j = −[∂eφ
ũ]−i,−j where ũi,j = u−i,−j is the point-reflected image.

Altogether this can be used for an approximation of the fractional dilation PDE

ut = |∇αu|+ := max
φ∈[0,2π)

∂α
eφ
u , (10)

and similarly ut = −|∇αu|− := minφ∈[0,2π) ∂
α
eφ
u for erosion. As in the 1D case, the

maximum makes |∇αu|+ always look into the direction from which the highest values
are advected, whereas −|∇αu|− uses the minimum to detect the direction from which
the lowest values are advected.

Unfortunately, the determination of the maximum in (10) requires some effort.
Whereas for integer derivative orders, directional derivatives at a given point depend
on the orientation angle just by low-order harmonics (such as a single sine wave for
first order, and a double sine wave for second order), fractional directional derivatives
can have multiple local maxima and minima over the orientation range [0, 2π]. We use
therefore a brute-force maximisation over sampled orientations for a full maximisation,
which comes at a significant computational expense, and leave efficiency optimisations
for future work. As a faster alternative, we consider an approach in which the direc-
tion of the standard (first-order) gradient vector is used to guide the direction of the
fractional derivative. In effect, this replaces the fractional dilation PDE (10) with

ut = |∂α
eφ
u|+ , eφ = (cosφ, sinφ) = ∇u

|∇u| , (11)

with ∇u approximated by central differences, and similarly for erosion. We will com-
pare these two variants of fractional morphological operations in our experiments. To
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Fig. 2. Standard and fractional PDE-based dilation PDE of a synthetic grey-scale image. All
dilations computed by an Euler forward scheme with time step size τ = 0.1 and 50 iterations
with brute-force maximisation (top row) or naive method (bottom row). (a) test image, 128×128
pixels; (b) standard dilation (α = 1); (c, f) fractional dilation, α = 1.5; (d, g) fractional dilation,
α = 0.75. (e) angular profiles of radii of dilated top-right discs.

(a) (b) (c) (d)

Fig. 3. Standard and fractional PDE-based dilation PDE of a synthetic grey-scale image. All
dilations computed by an Euler forward scheme with time step size τ = 0.1 and 30 iterations with
brute-force maximisation. Left to right: (a) test image, 128 × 128 pixels; (b) standard dilation
(α = 1); (c) fractional dilation, α = 1.5; (d) fractional dilation, α = 0.75.

put the method in context with existing work, we also formulate a naive method follow-
ing the popular approach of combining 1D fractional derivatives in grid directions:

ut = |cosφ| · |∂α
(sgn cosφ,0)u|+ + |sinφ| · |∂α

(0,sgn sinφ)u|+ (12)

with (cosφ, sinφ)T = ∇u/|∇u|, where the axial fractional derivatives collapse to 1D
fractional derivatives, and similarly for erosion.

3 Experiments

Synthetic test images. In our first series of experiments, see Figs. 2 and 3, we compare
standard and fractional dilation on two test images designed to demonstrate theoreti-
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cally predicted phenomena. The first of these images, Fig. 2(a), shows three black discs
against white background that will be shrunk by all variants of PDE-based dilation. We
show standard dilation (b), dilation with α = 1.5 as an example of 1 < α < 2 (c), and
dilation with α = 0.75 as an example of 0 < α < 1 (d), all computed via brute-force
maximisation. Here we truncate the stencils to 30 steps in both x and y direction. The
cut-off value is chosen such that both the individual neglected coefficients and their to-
tal are small enough to expect no significant influence on the image. For a cut-off of 30
steps, none of the neglected coefficients is greater than 10−4, and their total does not
exceed 0.002. Also, experiments with different cut-off values confirm that while there
are tiny visual differences in results where the cut-off size is reduced to 10 steps but
with cut-offs of 20 and more steps results are visually indistinguishable.

For comparison, we show also results of the naive fractional dilation method with
α = 1.5 (f), and α = 0.75 (g). In Fig. 2(e), we display angular profiles of the radii of
the evolved top right disc, obtained by fitting sigmoid functions to the radial intensity
profiles where the direction angle is measured from 0◦ (right) in positive orientation.

As expected, reasonable rotational invariance is observed with the brute-force max-
imisation for all three values of α, preserving the round shapes during evolution, Fig. 2
(b, c, d). The evaluation of radii, Fig. 2 (e), confirms the excellent rotational symmetry
of the Rouy-Tourin scheme for standard dilation, with an evolved disc radius of 23 in
agreement with the theory, given that its radius in the initial image is 28, and 50 iter-
ations with τ = 0.1 amount to a structuring element radius of 5. The radius is shrunk
faster with α < 1 and slower with α > 1. Fig. 2 (e) reveals slightly faster shrinkage in
diagonal than in axial directions, as visible in the range 0◦ . . . 180◦ (top two quadrants)
where the disc evolves unperturbed by neighbouring structures, which indicates some
further space for improvement in our discretisation of fractional derivatives.

The numerical dissipation due to the finite difference discretisation as evident in
the standard dilation result (b) is well-known. As anticipated in Section 2.2, α > 1 (c)
mitigates it whereas α < 1 (d) increases the blur. The non-locality of our fractional
derivatives implies that they look into the depth of bright structures during fractional
dilation. In our example, it is evident that standard dilation (b) evolves the discs roughly
independently whereas fractional dilation (c, d) reacts to the initial proximity of the
discs by speeding up for α > 1 (c) or slowing down for α < 1 (d) the inward movement
of contours in the regions of proximity, leading to a slight repulsion between the discs in
(c) and a slight attraction in (d). In Fig. 2 (e) the dents or peaks near directional angles
of 218◦ (bottom left part of the top right disc) and 270◦ (bottom) reflect this effect.

Regarding the naive dilation results, Fig. 2 (f, g), we notice that the radial deviations
from rotational symmetry (angular range 0◦ . . . 180◦) are smaller for the naive method
than for our proposed method in the case α > 1 but more pronounced than with our
approach in the case α < 1. However, the non-locality effects with the naive method
are highly direction-dependent: The repulsion in (f) is more pronounced in axial direc-
tion but almost absent in the diagonal direction, as confirmed by the different depth of
the dents in Fig. 2 (e); notice that there is even a slight attraction effect in directions
neighbouring to the diagonal 218◦ direction. The attraction in (g) is highly exagger-
ated in the axial direction but again much weaker in the diagonal direction; here, one
sees also that by the interaction of the 1-D fractional derivatives in x and y direction
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Standard and fractional PDE-based dilation PDE of a grey-scale image. All dilations com-
puted by an Euler forward scheme with time step size τ = 0.1 and 100 iterations. Top left to
bottom right in rows: (a) grey-scale image trui, 256×256 pixels; (b) standard dilation (α = 1),
brute-force maximisation; (c) fractional dilation, α = 1.25, brute-force maximisation; (d) same
but α = 1.5; (e) same but α = 0.75; (f) fractional dilation, α = 1.5, naive composition of x and
y derivatives; (g) standard dilation (α = 1), gradient-guided computation; (h) fractional dilation,
α = 1.25, gradient-guided computation; (i) same but α = 1.5; (j) same but α = 0.75.

over the iteration steps an unnatural filling in happens in the roughly triangular region
between the three discs. Comparing the evidence regarding rotational invariance of our
proposed 2-D fractional dilation versus the naive 1-D based fractional dilation, it can be
concluded that despite of an apparent slight advantage of the naive method in the case
of an isolated contour (top quadrants) and α > 1 the 2-D fractional dilation performs
clearly better in the overall isotropic treatment of image structures.

The second image, Fig. 3(a), is designed to show the evolution of straight contours
(on the left of each of the two white foreground objects) with structures of variable
thickness behind, where the “depth-probing” effect of fractional derivatives is expected
to appear. We see that standard dilation (b) propagates the straight left object contours at
uniform speed. For α > 1 (c) the propagation is accelerated where only thin bright lay-
ers back up the contour, leading to a progressively bumpy appearance of the propagated
contour from top to bottom. For α < 1 (d) an opposite effect is observed.
Real-world test image. For the following experiments we use a grey-scale image
shown in Fig. 4(a). In our first experiment, Fig. 4, we compare different variants of frac-
tional dilation for derivative orders greater and smaller than one with standard dilation.
In particular, we compute dilation using brute-force maximisation of directional frac-
tional derivatives and using the directional fractional derivative in the direction given by
the standard gradient (“gradient-guided computation”). As expected, the results of both
methods coincide for α = 1; for other values of α the results are similar such that the
gradient-guided method can be considered as an approximation of full maximisation.
However, the effects of the fractional derivatives are more pronounced with the full
maximisation since it finds the maximum of the fractional derivative with more accu-
racy. Comparing fractional to standard dilation, we observe the qualitative phenomena
suggested by our consideration of the 1D case in Sec. 2.2: for fractional orders greater
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Standard and fractional morphological filters for the grey-scale image trui from Fig. 4(a).
All dilations/erosions computed by an Euler forward scheme with time step size τ = 0.1, 50
iterations, and brute-force maximisation. Top row: (a–e) standard morphological filters (α =
1). Bottom row: (f–j) fractional morphological filters, α = 1.5. Left to right: (a, f) dilation;
(b, g) erosion; (c, h) closing; (d, i) opening; (e, j) shock filter.

than one, an enhancement of edges and thin line structures and a reduction of numerical
dissipation, and for a fractional order below one, contrast reduction and blurring. Note
that all results reveal a reasonable degree of rotational invariance. To complement our
comparison of methods, we give one result for the naive method which confirms its sig-
nificant directional bias, evident from the blocky appearance of the dilated highlights.

Our next experiment, see Fig. 5, demonstrates the effects of simple and composed
morphological operators: dilation, erosion, closing (by feeding the result of the dilation
up to the desired evolution time into an erosion evolution that runs for the same time),
opening (analogously) and a morphological shock filter. Given the strong dissipation
with fractional order below one, we focus here on fractional orders above one as the
more interesting case. Moreover, we choose a shorter evolution time than in the previous
experiment. The shock filter of fractional order α with full maximisation is defined here
as (fractional) dilation for locations where the directional derivative of order α + 1 is
negative, erosion where it is positive. Note that with our upwind-like discretisation of
directional fractional derivatives of order ̸= 1 the switch can be made simply dependent
on the sign of [|∇αu|]+ + [|∇αu|]−, i.e. just computing the r.h.s. for the dilation and
erosion evolution at each point and using the absolutely lesser of the two.

The effects of fractional erosion, closing and opening with order α = 1.5 compared
to their standard morphological counterparts are along the lines to be expected from
our observations on dilation: more pronounced enhancement of contours, and lesser
dissipation. In the closing it is interesting to note that due to the contrast enhancement
of some minima (dark spots) in the dilation step, the subsequent erosion creates larger
dark patches that are darker than in the original image; similarly for opening.

For the shock filter a fractional order α = 1.5 is unfavourable in that it leads to
the creation of many new extrema that are then enhanced in the process. We compare
shock filter results for a broader range of derivative orders in Fig. 6. For α = 1.25 the
creation of additional extrema is already less pronounced than for α = 1.5. In contrast,
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(a) (b) (c) (d)

Fig. 6. Standard and fractional morphological shock filtering of the grey-scale image trui from
Fig. 4(a). All evolutions computed by an Euler forward scheme, τ = 0.1, 50 iterations, and
brute-force maximisation. Left to right: (a) α = 0.5; (b) α = 0.75; (c) α = 1; (d) α = 1.25.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 7. Standard and fractional morphological filters. All dilations/erosions computed by an Euler
forward scheme with time step size τ = 0.1, 100 iterations, and brute-force maximisation. Top
row: (a) grey-scale image boats, 512 × 512 pixels, (b–e) standard morphological filters (α =
1). Bottom row: (f–i) fractional morphological filters, α = 1.5. Left to right: (b, f) dilation;
(c, g) erosion; (d, h) closing; (e, i) opening.

fractional orders below one turn out beneficial here as can be seen from the results for
α = 0.75 and α = 0.5 where the segmentation-like effect of the standard (α = 1) filter
is even more pronounced, and both segments and their boundaries are visibly smoothed,
apparently by the interaction of the blurring tendency of the fractional dilation and
erosion for 0 < α < 1 with the shock-creating effect of the switch.

Finally, we show in Fig. 7 additional numerical results for a well-known test im-
age boats comparing standard morphological filters (α = 1) such as dilation, erosion,
closing, and opening with fractional morphological filters using α = 1.5.

4 Conclusion

We have established a framework for space-fractional PDE-based grey-scale morphol-
ogy by replacing the spatial derivatives in the Hamilton-Jacobi PDEs describing mor-
phological dilation and erosion with a fractional derivative. We have proposed a novel
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variant of spatial fractional derivatives with spatial discretisations consequently de-
signed to incorporate geometric invariance with respect to reflections and rotations. The
discretisation is derived from developing fractional powers of a polynomial associated
with an upwind-type first derivative stencil into a power series. As with all fractional
derivative concepts, the infinite support requires a truncation. Approximation of frac-
tional dilation and erosion PDEs then involves a one-dimensional optimisation problem
for the advection direction. With this at our hand, higher morphological operations such
as opening, closing, and shock filter are at our disposal. Numerical results confirm ana-
lytically predicted properties of the filters and show that the new method achieves better
rotational invariance than conventional approaches.

Future work will be directed on one hand at improvements of the method, in partic-
ular more efficient ways to perform the optimisation over advection directions in (10)
in order to avoid the brute-force optimisation used in most of our experiments so far,
and on the other hand at a more extensive evaluation of the possible benefits of the
space-fractional morphological filters for application problems. Moreover the choice of
the truncation length for the fractional derivative stencils (which was fixed to 30 in our
2D image experiments) deserves additional investigation analytically and experimen-
tally. Extensions of the approach to colour images and to non-Euclidean norms simu-
lating non-disc-shaped structuring elements are other possible goals. Last but not least,
the approach should be embedded into a broader view encompassing space-fractional
derivatives for various image processing problems.
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