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Abstract. Quantile filters, or rank-order filters, are local image filters which as-

sign quantiles of intensities of the input image within neighbourhoods as output

image values. Combining a multivariate quantile definition developed in matrix-

valued morphology with a recently introduced mapping between the RGB colour

space and the space of symmetric 2 × 2 matrices, we state a class of colour im-

age quantile filters, along with a class of morphological gradient filters derived

from these. Using amoeba structuring elements, we devise image-adaptive ver-

sions of both filter classes. Experiments demonstrate the favourable properties of

the filters.
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1 Introduction

In J. A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, eds., Mathematical Morphology and its

Applications to Signal and Image Processing, Lecture Notes in Computer Science, vol. 9082, pp.

398–409, c©Springer International Publishing Switzerland 2015

The core of mathematical morphology is formed by the study of grey-value image filters

that are equivariant under automorphisms of the image plane and under monotonically

increasing transformations of the intensities, see e.g. [15]. Equivariance means that the

filtering step and the respective transform of the data commute: Transforming the filter

result by one of the mentioned transforms yields the same result as if the same transform

had been applied to all input values, and the filter applied to the so transformed data.

Equivariance under monotonically increasing grey-value maps is often called mor-

phological invariance. This axiomatic definition of morphological filtering, following

[15], includes the most fundamental morphological operations, dilation and erosion,

and numerous filters composed of these, but also further filters like the median filter.

Median filtering has been established since Tukey’s work [19] as a simple and

robust denoising filter for (univariate) signals and images with favourable structure-

preserving properties. Since the median of a set of data is equivariant with respect to

arbitrary monotonically increasing intensity transformations, the median filter is mor-

phologically invariant. The same equivariance with regard to monotonous transforma-

tions holds for arbitrary α-quantiles, giving rise to α-quantile filters (also known as

rank-order filters) as a class of morphological filters that nicely interpolate between

erosion (α = 0), median filter (α = 1/2) and dilation (α = 1).
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Adaptive morphology and amoebas. Like other local image filters, median filtering can

be understood as the combination of two steps: first, a sliding-window selection step,

and second, the aggregation of the so selected input values. For median filtering, aggre-

gation is done by taking the median; other local filters use different aggregation proce-

dures, such as maximum for dilation, etc. Changing the selection rule, away from a fixed

shape sliding window towards spatially adaptive neighbourhoods, provides a means to

increase the sensitivity of these filters to important image structures; such approaches

are summarised as adaptive morphology. One class of such adaptive neighbourhoods

are morphological amoebas as introduced by Lerallut et al. [12, 13]. In their construc-

tion, one combines spatial distance in the image domain with the intensity contrast into

an image-adaptive amoeba metric. Structuring elements called amoebas are then de-

fined as neighbourhoods of prescribed radius in this amoeba metric. By the construction

of the amoeba metric, these neighbourhoods adapt sensitively to image structures.

On the theoretical side, amoeba filters for scalar-valued images have been investi-

gated further in [22, 23], especially by relating space-continuous versions of them to

image filters based on partial differential equations (PDEs). Put very short, it is proven

there that amoeba median filtering is an approximation of the self-snakes PDE [17]

where the specific choice of the amoeba metric translates into the choice of the edge-

stopping function in the self-snakes PDE. Amoeba dilation and erosion filters as well as

α-quantile filters with α 6= 1/2 are shown to approximate Hamilton–Jacobi PDEs for

front propagation with different image-dependent speed functions. These results gener-

alise known facts about non-adaptive filters, namely that median filtering approximates

(mean) curvature motion [8], and dilation and erosion are related to Hamilton–Jacobi

equations with constant speed functions.

An interesting filter derived from morphological dilation and erosion is the (self-

dual) morphological gradient, or Beucher gradient [16], defined as the difference be-

tween dilation and erosion of the input image with the same structuring element. It

provides an approximation to the gradient magnitude |∇u| of the input image u, which

is also consistent with the previously mentioned approximation of Hamilton–Jacobi

equations by dilation and erosion. Note that the morphological gradient is not morpho-

logically invariant as it depends on grey-value differences.

The interpolation between dilation and erosion afforded by quantiles motivates to

consider also the difference between the (1/2+α)-quantile and the (1/2−α)-quantile

of the same image with the same structuring element as a morphological gradient oper-

ator. This is further supported by the above-mentioned relation between quantile filters

and Hamilton–Jacobi equations, from which it is evident that such a filter, too, approxi-

mates |∇u| up to some scaling factor. Already [16] implies this possibility by defining

a gradient operator as the difference of an extensive and an anti-extensive operator. We

will call morphological gradients established in this way quantile gradients.

Multivariate morphological filters. Due to the favourable robustness and structure

preservation of the classical median filter, interest in median filtering procedures for

multivariate data developed soon in the image processing community. Nowadays, me-

dian filtering for multivariate images is mostly based on the multivariate generalisation

of the median concept that is known in the statistical literature as spatial median or L1
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median. The L1 median, going back to [9, 20], has been applied to colour images [18] as

well as to diffusion tensor images [24, 25] where pixel values are symmetric matrices.

Also for morphological dilation and erosion, multivariate counterparts have been

developed. Unlike the median, the concepts of supremum and infimum of data values

that underlie dilation and erosion require reference to some ordering on the data. For

instance, dilation and erosion for diffusion tensor data have been established in [5]

using the Loewner order [14] of symmetric matrices in connection with the non-strict

total ordering relation given by the traces of matrices.

In [3], this well-understood framework for matrix-valued morphology has been used

to establish a concept of colour morphology. To this end, RGB colour images were

transformed via an intermediate HCL (hue–chroma–luminance) colour space to matrix-

valued images, such that the matrix-valued supremum from [5] could be used to define

colour dilation; analogously for erosion. Recently, [11] used the same colour–matrix

translation for colour image median filtering.

Multivariate α-quantile filters that generalise the L1 median concept were consid-

ered in [6] and more recently in the case of matrix-valued images in [25]. These ap-

proaches differ in how they handle the inherent directionality of the quantile concept.

In [6] it is pointed out that the parameter α of a scalar-valued α-quantile can be rescaled

to 2α − 1 ∈ [−1, 1] and then describes a direction and amplitude of deviation of the

quantile from the median within the input distribution. Thus their quantile concept for

n-dimensional data uses a multidimensional parameter from the unit ball in IRn in place

of α. In contrast, [25] use the magnitude of input matrices as a natural direction of pref-

erence to allow for a one-dimensional parameter α as in the scalar-valued case. Our

present work, too, builds on filtering matrix-valued data, and the magnitude of matrix

values represents the luminance of the underlying colour values which again constitutes

a natural preferred direction. Thus we follow here the quantile definition in [25].

To construct from matrix-valuedα-quantile filters also quantile gradients is straight-

forward. However, the application to colour images imposes an additional hurdle if gra-

dient values are to be represented as colour values for convenient visualisation. For this

purpose, [4] suggests to use Einstein co-subtraction, which we will also do here.

One more word of care needs to be said. Although the multivariate morphologi-

cal filters in general, and their matrix-valued versions in particular, mimick numerous

properties of scalar-valued morphology, important differences remain. Not only must

one abandon the property of scalar-valued median filter, dilation, and erosion to yield

always data values from the input data set; also the PDE limit relationships break down

to some extent. As demonstrated in [22], L1-median filtering of multivariate data yields

a PDE limit that appears practically unmanageable due to the inconvenient structure of

the PDE and its coefficient functions that involve elliptic integrals.

Structure of the paper. Section 2 collects the definitions of matrix-valued morpholog-

ical filters that are used in the sequel. Section 3 describes the transformation between

colour images and matrix fields that is used afterwards to obtain colour image filters

from matrix-valued ones. In Section 4 we recall the construction of amoeba metrics

and amoeba structuring elements, and their adaptation to the multivariate setting under

consideration. Section 5 presents experiments to demonstrate the effect of our filters. A

short summary and outlook is presented in Section 6.
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2 Matrix-Valued Morphological Filters

Median filter. Notice first that the median of scalar-valued data x1, . . . , xk ∈ IR is

µ := argmin
x∈IR

k
∑

i=1

|x− xi| . (1)

(This argmin is set-valued for even k, which is commonly disambiguated in some way.

As this set-valuedness disappears in the multivariate case except for degenerate situa-

tions, we do not further discuss it here.) Generalising this observation, the L1 median

[20] of a set of points x1, . . . ,xk in the Euclidean space IRn is defined to be the point

x that minimises the sum of Euclidean distances to the given data points, i.e.

µ := argmin
x∈IRn

k
∑

i=1

‖x− xi‖ . (2)

For data from the set Sym(n) of symmetric n × n matrices, the Euclidean norm

‖x− y‖ in (2) is naturally replaced with the Frobenius norm ‖X − Y ‖F of the matrix

X − Y , i.e. the square root of the sum of its squared entries. Other matrix norms can

be used instead, such as the nuclear (or trace) norm (the sum
∑n

i=1|λi| of the moduli

of eigenvalues λi of X − Y ) or the spectral norm (the maximum of the |λi|), see [25].

It should be noticed that the median concept, by referring to a central value of the

data distribution, does not make use of the direction of the ordering relation. Therefore

also the multivariate median concepts do not require an ordering on the data, and are

therefore equivariant under Euclidean rotations of IRn.

Dilation and erosion. The Loewner order [14] is a half-order 4 for symmetric matrices

in which X 4 Y is defined to hold for matrices X , Y if and only if Y −X is positive

semidefinite. For a set of data values X := {X1, . . . ,Xk}, the Loewner order defines

a convex set of upper bound matrices,

U(X ) := {X ∈ Sym(n) | Xi 4 X, i = 1, . . . , k} . (3)

To distinguish within this set a unique supremum of X , an additional total ordering

relation is required. As proposed by [5] the non-strict ordering relation that compares

matrices by their trace can serve this purpose. The supremum of X is then defined as

minimal element of U(X ) with regard to the trace order,

Sup(X ) := Y such that trace(Y ) ≤ trace(X) ∀X ∈ U(X ) . (4)

Dilation for matrix-valued images is then achieved by combining selection via a suitable

structuring element with aggregation by the supremum operation (4).

Quantiles. Scalar-valued α-quantiles can be described analogously to (1) by replacing

the modulus |x− xi| with fα(x− xi) where fα(z) := |z|+ (1− 2α)z. This motivates

to define matrix-valued quantiles of a set X of symmetric matrices [25] as

Qα(X ) := argmin
X∈Sym(n)

k
∑

i=1

‖Fα(X −Xi)‖F (5)
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where Fα : Sym(n) → Sym(n) is the matrix-valued generalisation of fα; given a

symmetric matrix Y with spectral decomposition Y = Q diag(λ1, . . . , λn)Q
T, it is

obtained via Fα(Y ) := Q diag
(

fα(λ1), . . . , fα(λn)
)

QT.

Limit cases of quantiles. One is interested in the limit cases α → 0, α → 1 of matrix

quantiles. The matrix-valued quantile definition (5) is based on the Frobenius norm. It

is easy to see that for α → 1, the α-quantile of a set X = {X1, . . . , Xk} of symmetric

matrices converges to an element Q1 of U(X ). As a result of the minimisation condition

in (5), Q1 will be the (unique) extremal point of U(X ) for which the Frobenius norm of

Q1− 1
k (X1+. . .+Xk) becomes minimal. A rigorous proof of this fact will be included

in a forthcoming paper. We point out that in a large variety of cases Q1 coincides with

the supremum (4), but there exist cases in which the two differ.

3 Translating Between Colours and Symmetric Matrices

We start by recalling the conversion procedure from intensity triples (r, g, b) in RGB

colour space to symmetric 2× 2 matrices A ∈ Sym(2) as introduced in [3] and used in

[11]. By pixelwise application, an RGB image u is then transformed into a matrix field

F of equal dimensions.

The conversion from [3] is a two-step procedure. Each RGB triple (r, g, b) is first

mapped non-linearly into a (slightly modified) HCL colour space. The second step is a

Euclidean isometry from the HCL space into the space Sym(2).
To begin with the first step, let an intensity triple (r, g, b) with 0 ≤ r, g, b ≤ 1 be

given. Using the abbreviations

M := max{r, g, b} , m := min{r, g, b} , (6)

we compute hue h ∈ [0, 1), chroma c ∈ [0, 1], and luminance l ∈ [−1, 1] as

c := M −m , l := M +m− 1 , h :=











1
6 (g − b)/M modulo 1 , M = r ,
1
6 (b− r)/M + 1

3 , M = g ,
1
6 (r − g)/M + 2

3 , M = b .

(7)

Except for a rescaling of the luminance, this corresponds to Algorithm 8.6.3 from [1].

These values represent colours in a cylindrical coordinate system, with c as radial, 2πh
as angular, and l as axial coordinate. The gamut of RGB colours represented by the

cube [0, 1]3 is thereby bijectively mapped onto the bi-cone Γ given by c+ |l| ≤ 1.

For the second step, we transform the cylindrical coordinates (c, h, l) to Cartesian

coordinates by x = c cos(2πh), y = c sin(2πh), z = l, and further to symmetric

matrices A ∈ Sym(2) via

A =

√
2

2

(

z − y x
x z + y

)

. (8)

Note that (8) defines an isometry between the Euclidean space IR3 and the space Sym(2)
with the metric d(A,B) := ‖A−B‖F. The set of all matrices A which correspond to

points of the bi-cone Γ is therefore itself a bi-cone in Sym(2) which in the following

will be identified with Γ .
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From symmetric matrices to RGB triples. Concerning the converse transform, i.e. from

matrices to RGB triples, it is straightforward to invert the previously described trans-

form, compare [3].

However, in the context of quantile and gradient computation, additional difficulties

arise. First, as [4] points out, the matrix supremum (4) and the corresponding infimum

do not necessarily lie within the convex hull of the input data. Even for input matrices

from the bi-cone Γ , the supremum is only guaranteed to belong to the unit ball B given

by l2 + c2 ≤ 1. The same is true for the α-quantiles (5) as soon as α 6= 1/2.

Following [4], we use therefore the inverse of the map Θ from [4, eq. (5)] to map

quantiles from B back to Γ before transforming them back to the RGB colour space.

Written in terms of the (h, c, l) colour space, the inverse map reads as

Θ−1(h, c, l) = (h, c/κ, l/κ) (9)

where κ is the solution of κν+1 − κν − (c + l)ν
(

c + l −
√
c2 + l2

)

/
√
c2 + l2 = 0 in

the interval κ ∈ [1,
√
2], with a constant ν that we fix to 10 as proposed in [4].

Second, the difference of matrices from B obviously needs not to belong to B.

Therefore the morphological gradient in [4] is not defined via standard subtraction of

supremum and infimum but instead by a so-called Einstein co-subtraction ⊟ (similar to

a relativistic subtraction of velocities) to ensure that the difference is within the ball B.

For symmetric matrices A,B ∈ B, the Einstein co-subtraction is defined as [4, Sec. 5]

A⊟B :=
2C

1 + ‖C‖2F
where C :=

√

1− ‖B‖2FA−
√

1− ‖A‖2FB
√

1− ‖B‖2F +
√

1− ‖A‖2F
. (10)

Following this approach, we define the quantile-based gradient Dα(X ) as

Dα(X ) := Q1/2+α(X ) ⊟Q1/2−α(X ) . (11)

Since Dα(X ) belongs to B, it can be mapped to Γ via Θ−1 from (9) and finally be

represented in the RGB colour space, with grey (r = g = b = 1/2) as neutral value.

Like their scalar-valued counterpart, colour morphological gradients can be expected to

be useful for edge detection.

4 Amoebas

In order to extend our previously defined colour quantile and quantile gradient filters

into adaptive morphological filters, we use amoebas as structuring elements. This sec-

tion is therefore devoted to the construction of amoebas using spatial distance and im-

age contrast (tonal distance). The construction presented here basically follows [11]

where Lerallut et al.’s original amoeba framework [12] was adapted to symmetric ma-

trices as data values. However, unlike in [11, 12], where spatial and tonal information

were combined via an L1 sum, and spatial distance measurement itself is based on 4-

neighbourhoods, we use for our quantile and quantile gradient filters in this work an

L2 spatial-tonal sum with spatial 8-neighbourhoods as in [22, Sec. 4.3]. The latter are

preferred for their better approximation of Euclidean distance in the image plane; note
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however that continuous-scale arc length could be approximated even better by more

sophisticated approaches, see [2, 7, 10]. Regarding alternatives for how the spatial and

tonal distances could be combined, see also [21] (in univariate formulation).

Let a matrix field F over a discrete image domain Ω be given, such that Fi ∈
Sym(2) denotes the data value assigned to the pixel location i ∈ Ω. Let (xi, yi) be

the spatial coordinates of pixel i. We introduce an amoeba metric dA for pairs (i, i′)
of adjacent pixels (where adjacency can be horizontal, vertical, or diagonal, thus 8-

neighbourhoods are used) by

dA(i, i
′) :=

√

(xi − xi′)2 + (yi − yi′)2 + β2‖Fi − Fi′‖2F , (12)

which is an L2 sum of the Euclidean distance of i and i′ in the image plane, and the

Frobenius distance of their data values weighted with β > 0.

To construct a structuring element around some given pixel i0 ∈ Ω, we consider

paths P = (i0, i1, . . . , ik) starting at the given i0 with ij ∈ Ω such that each two

subsequent pixels ij , ij+1 are adjacent in Ω horizontally, vertically or diagonally (thus,

8-neighbourhoods are used). We measure the length of such a path P using the amoeba

metric introduced above as

L(P ) :=
k−1
∑

j=0

dA(ij, ij+1) . (13)

A pixel i∗ ∈ Ω is included in the amoeba structuring element around i0 if and only if

there exists some k and a path P starting at i0 and ending at ik = i∗ with L(P ) ≤ ̺.

This procedure is repeated for each pixel i0 to generate a complete set of structuring

elements for the given matrix field. The amoeba construction has two free parameters:

the amoeba radius ̺ > 0 and the contrast scale β > 0.

Note that the path length L(P ) equals the Euclidean length of P in constant image

regions but the more data variation is met along P , the more L(P ) exceeds the Eu-

clidean path length. As a consequence, structuring elements adapt to image structures,

extending preferredly towards locations with similar data values, but avoiding to cross

strong contrast edges.

5 Experiments

In this section we demonstrate the effect of our matrix-based colour quantiles and quan-

tile gradients using two test images, see Figure 1(a) and Figure 4(a). From the nature

of the filters in question, it is expected that α-quantile filters for α = 0 . . . 1 provide a

gradual transition from erosion via median to dilation. Quantile gradients are expected

to highlight colour edges with high sensitivity to colour differences, making them usable

as a building block for colour image edge detection. Up to some α-dependent scaling

colour quantile gradients should yield similar results as the classical Beucher gradi-

ent, but possibly with increased robustness. Amoeba versions of both filter classes are

expected to improve the sharp edge preservation over their non-adaptive counterparts.

Figure 1(b)–(f) show the results of α-quantile filtering with a non-adaptive structur-

ing element applied on the first test image, where α is varied in the range 0.1 to 0.9.
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a b c d e f

Fig. 1. Colour α-quantile filtering with a non-adaptive disc-shaped structuring element of radius

5. Left to right: (a) Test image, 128×128 pixels. – (b) Colour quantile, α = 0.1. – (c) α = 0.3.

– (d) α = 0.5 (median). – (e) α = 0.7. – (f) α = 0.9.

A B C

D

a b c d e f

Fig. 2. Gradient filtering of the test image from Figure 1(a) with a non-adaptive disc-shaped

structuring element of radius 5. Left to right: (a) Quantile gradient, α = 0.1. – (b) Quantile

gradient, α = 0.2. – (c) Quantile gradient, α = 0.3. – (d) Quantile gradient, α = 0.4. – (e)

Beucher gradient based on the dilation and erosion operators from [3]. – (f) Same as (b) with four

locations A–D marked for more detailed analysis.

The gradual transition between an erosion-like and dilation-like behaviour is evident.

Colour tones are preserved in a visually appealing way across the parameter range.

In Figure 2(a)–(d) we display quantile gradients Dα for the same test image and

α from 0.1 . . . 0.4. The series is completed with the Beucher gradient computed from

dilation and erosion according to [3] (although this is not the exact limit case of Dα, as

pointed out at the end of Section 2). Remember that grey (r = g = b = 1/2) represents

a zero matrix, thus also zero gradient. Colours brighter than that correspond to matrices

of larger trace. By the construction of the morphological (quantile or standard Beucher)

gradients, this is naturally the case for all its values. Furthermore, it is evident that de-

spite using the same structuring element across the series (a)–(e), the quantile gradients

with smaller α are not just gradients with reduced contrast; instead, they are sharper

than those for larger α or the standard Beucher gradient. This is consistent with the fact

proven in the univariate case [22] that α-quantiles approximate the same continuous

process as dilation or erosion but at a reduced speed; thus using quantiles with α closer

to 1/2 in computing the gradient has a similar effect as a smaller structuring element

but without the increased noise sensitivity of such a smaller structuring element.

Figure 2(f) marks four locations in the image domain: Pixel A is located on an edge

as evident from the gradient data; pixel B is located slightly off the same edge; pixel C

is placed in an area where colours vary slowly but do not feature sharp edges; pixel D

resides in an almost flat area.

For these four locations, Figure 3 illustrates the dependency of their respective

colour quantiles Qα (with the same structuring element as in the preceding experi-

ments) on α. The plots in the upper row represent the coordinates x, y, z of the inter-

mediate colour space as functions of α. For the edge pixel A, the resulting curves have
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C
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Fig. 3. Colour quantiles of the image from Fig. 1(a) as functions of α for four exemplary points

A–D marked in Fig. 2(f). Top row: Cartesian coordinates x, y, z in the intermediate colour space

as functions of α for α ∈ [0.1, 0.9]. – Bottom row: Projections of the colour quantile curve for

α ∈ [0.1, 0.9] from the x-y-z space to the x-y, x-z and y-z planes.

essentially a sigmoid shape centred at the median (α = 0.5). For the nearby pixel B,

similar curve shapes are observed but the inflection point of the sigmoid is shifted to

α ≈ 0.2. Simultaneous consideration of quantiles across a suitable range of α could

therefore be used for precise localisation of edges. For pixel C, it is visible that its

quantiles vary almost linearly with α, while for pixel D they are essentially constant, as

could be expected. The bottom row of Figure 3 shows the projections of the trajectories

of Qα for pixels A–D in the (x, y, z) space to its three coordinate planes. The almost

linear shape of the curves confirms that colour quantile gradients Dα for different α
differ mainly in amplitude but not in their direction in colour space. It is also evident

that the variation of quantiles, and thus the gradient, is largest on and nearby the edge,

smaller for the slope region around C and very small in the homogeneous region at D.

Figure 4 demonstrates non-adaptive quantiles and gradients on a second test image.

Turning to adaptive filtering using the amoeba framework, we show in Figure 5

quantile filtering of the same test image as in Figure 1 but replacing the non-adaptive

structuring element of radius 5 with amoebas of radius ̺ = 5. Thus, the same structur-

ing elements as in the non-adaptive case result in homogeneous regions, while the filter

effect is attenuated where contrasts prevail. Frames (a)–(d) of Figure 5 show quantiles

for α in the range 0.1 to 0.9 and amoeba contrast scale parameter β = 10, while (e) and

(f) vary the contrast parameter. As expected, amoeba filtering gives sharper results than

non-adaptive filters but this effect goes away when β is chosen smaller (e). Increasing

β to 30, see Figure 5(f), does not result in much additional sharpness of the result.
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a b c d e f

Fig. 4. Non-adaptive α-quantile and gradient filtering with a disc-shaped structuring element of

radius 5. Left to right: (a) Test image, 131×173 pixels. – (b) Quantile, α = 0.2. – (c) Quantile,

α = 0.5 (median). – (d) Quantile, α = 0.8. – (e) Quantile gradient, α = 0.3. – (f) Beucher

gradient based on the dilation and erosion operators from [3].

a b c d e f

Fig. 5. Colour amoeba α-quantile filtering of the test image from Figure 1(a) with structuring

element radius ̺ = 5. Left to right: (a) α = 0.1, contrast scale β = 10. – (b) α = 0.3, β = 10.

– (c) α = 0.7, β = 10. – (d) α = 0.9, β = 10. – (e) α = 0.7, β = 3. – (f) α = 0.7, β = 30.

Figure 6 shows colour quantile and Beucher gradients of the same image. Again,

(a)–(d) use the same contrast scale β = 10 to demonstrate how the amplitude of the

gradient image increases from small to larger α and up to the Beucher gradient. Note

how in all cases the amoeba method achieves sharper localisation of edges compared to

the non-adaptive approach. In (e) and (f) variation of β is shown. Again, β = 3 appears

too small for the amoeba procedure to take substantial effect. In contrast, β = 30
suppresses the filter at edges so much that edges almost cannot be detected in the filtered

image while the moderate contrasts within smooth regions survive.

Finally, Figure 7 demonstrates the amoeba quantile and gradient filtering on the

second test image, with similar results as in Figures 5 and 6. Note that unlike in the

non-adaptive case, see Figure 4, where the dilating or eroding effect of quantiles is

significant the two amoeba quantile filtering results in Figure 7 (a), (b) keep contours

fairly well in place, while at the same time some smoothing together with a darkening

(α = 0.2) or brightening (α = 0.8) takes place. Given that also the colour tones are

fairly well preserved, the amoeba quantile filters lend themselves as robust operators

for adjusting image brightness.

6 Summary and Outlook

In this paper we have extended the work from [3, 4, 11] on the application of matrix-

valued morphology to colour image processing. Using the matrix-valued quantile defi-

nition from [25] we have provided colour quantile filters that interpolate between ero-

sion, median, and dilation, and can be used to obtain a variant of morphological gradi-
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a b c d e f

Fig. 6. Colour amoeba gradient filtering of the test image from Figure 1(a) with structuring el-

ement radius ̺ = 5. Left to right: (a) Quantile gradient, α = 0.2, β = 10. – (b) Quantile

gradient, α = 0.3, β = 10. – (c) Quantile gradient, α = 0.4, β = 10. – (d) Beucher gradient

using the dilation and erosion from [3], β = 10. – (e) Quantile gradient, α = 0.4, β = 3. – (f)

Quantile gradient, α = 0.4, β = 30.

a b c d e f

Fig. 7. Amoeba α-quantile and gradient filtering of the test image from Figure 4(a) with structur-

ing element radius ̺ = 5. Left to right: (a) Quantile, α = 0.2, β = 10. – (b) Quantile, α = 0.8,

β = 10. – (c) Quantile gradient, α = 0.3, β = 10. – (d) Beucher gradient based on the dilation

and erosion operators from [3], β = 10. – (e) Quantile gradient, α = 0.3, β = 3. – (f) Quantile

gradient, α = 0.3, β = 30.

ents that combine good localisation of colour edges with robustness. Using the morpho-

logical amoeba framework [11–13, 23] we have formulated image-adaptive versions of

quantile and quantile gradient filters with favourable edge-preserving properties.

Ongoing research is directed at further theoretical analysis, including the interaction

between structuring element radius, quantile parameter α, and the amoeba adaptivity in

gradient computation, as well as the limit relation between quantile filters and dila-

tion/erosion. Also, the numerics of multivariate quantile computation will be a subject

of future work. On the application side, the use of quantile gradient filtering in edge

detection and image segmentation will be of interest but also the suitability of amoeba

quantile filters for image brightness adjustment.
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