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Abstract. Amoebas are image-adaptive structuring elements for morphological
filters that have been introduced by Lerallut et al. in 2005. Iterated amoeba me-
dian filtering on grey-scale images has been proven to approximate asymptoti-
cally for vanishing structuring element radius a partial differential equation (PDE)
which is known in image filtering by the name of self-snakes. This approximation
property helps to understand the properties of both, morphological and PDE, im-
age filter classes. Recently, also the PDEs approximated by multivariate median
filtering with non-adaptive structuring elements have been studied. Affine equiv-
ariant multivariate medians turned out to yield more favourable PDEs than the
more popular L1 median. We continue this work by considering amoeba median
filtering of bivariate images using affine equivariant medians. We prove a PDE ap-
proximation result for this case. We validate the result by numerical experiments
on example functions sampled with high spatial resolution.

1 Introduction

In J. Angulo, S. Velasco-Forero, F. Meyer, eds., Mathematical Morphology and its Applications to
Signal and Image Processing, Lecture Notes in Computer Science, vol. 10225, pp. 271–283,
c©Springer International Publishing Switzerland 2017

Image processing methods based on superficially disparate paradigms often show sur-
prising similarities in their results. For example, discrete image filters designed in a mor-
phological frameworks can often be connected to partial differential equations (PDEs).
Dilation and erosion can be linked to Hamilton–Jacobi PDEs [2]; the median filter is
known to approximate in a continuous limit a curvature motion PDE [10]. The impor-
tant role of adaptive filters in all branches of image processing has triggered interest in
extending such connections also to adaptive filters.

In mathematical morphology, adaptive filters can be based on adaptive structur-
ing elements. Morphological amoebas which have been introduced by Lerallut, De-
cencière and Meyer [14, 15] are one class of such image-adaptive structuring elements.
The essence of the amoeba construction is the definition of a spatially variant met-
ric on the image domain that combines the spatial distance with local image contrast.
The structuring element of a pixel is then defined as a neighbourhood of prescribed
radius with regard to this metric. Thereby, preferably pixels with similar intensities are
included. The shape of the structuring element then adapts flexibly to image details,
giving reason to the name amoebas.

Morphological amoebas are naturally linked to graph morphology [21]. They have
been compared to further types of adaptive structuring elements [6, 9, 22]. They have
also been employed to construct an active contour method for image segmentation [25].
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Amoeba-based filters for multi-channel images, such as colour images or diffusion ten-
sor data sets, have also been considered [8, 13].

For univariate amoeba median filtering, it has been shown [29] that it approximates
the so-called self-snakes PDE [18] in a space-continuous limit. In this paper, we want
to investigate amoeba median filtering of multi-channel images under this aspect. In
recent image processing literature, multivariate median filtering is mostly based on the
so-called L1 median [13, 20, 30]. For multivariate median filtering using the L1 median,
a PDE limit becomes fairly complicated already in the non-adaptive case [28]. However,
in [27] it was shown that two affine equivariant median concepts, the Oja median [16]
and the transformation–retransformation L1 median [5, 12, 17], give rise to image filters
that can be related to simpler and more manageable PDEs.

Our contribution. Motivated by the previously mentioned results, we study amoeba
filters based on the affine equivariant Oja and transformation–retransformation L1 me-
dian. For the purpose of the present paper, we restrict ourselves to the bivariate case,
i.e. two-channel images, and one specific amoeba metric. We derive a PDE that is ap-
proximated by the amoeba median filter under consideration. More precisely, one step
of amoeba median filtering in a space-continuous setting asymptotically approximates
a time step of an explicit scheme for the PDE when the radius of structuring elements
tends to zero; the time step size goes to zero with the square of the radius.

The focus of our contribution is theoretic. Therefore we refrain from presenting
image filtering experiments; apart from flow fields, there are not many meaningful ap-
plication cases for bivariate images. Instead we will validate our approximation results
by numerical experiments on example functions sampled with high spatial resolution.

Structure of the paper. We recall the main facts on amoeba filtering procedures in Sec-
tion 2. Section 3 is devoted to multivariate median concepts. Our analysis of bivariate
amoeba median filtering is presented in Section 4, followed by the numerical validation
in Section 5. A conclusion is given in Section 6.

2 Amoeba Filtering

Discrete amoeba filtering. The construction of amoeba structuring elements [14] relies
on an amoeba metric. Given a discrete image u = (ui)i∈J over a discrete domain
such as J = {1, . . . ,M} × {1, . . . , N}, the amoeba metric measures the distance
between two neighbouring pixels i, j ∈ J as d(i, j) := ϕ

(
‖i − j‖, β |ui − uj |

)
,

where ϕ : R2
+ → R+ is a 1-homogeneous continuous function. In [14] the L1 sum

ϕ(s, t) ≡ ϕ1(s, t) := s + t is used; an alternative is the L2 sum ϕ(s, t) ≡ ϕ2(s, t) :=√
s2 + t2. The neighbourhood relation may be defined by 4-neighbourhoods as in [14]

or 8-neighbourhoods; other choices are possible. The contrast-scale parameter β > 0
balances the influence of spatial and intensity information.

Summation along paths P := (i0, i1, . . . , ik) where ij and ij+1 for j = 0, . . . , k−1
are neighbours yields the path length L(P ) =

∑k−1
j=0 d(ij , ij+1). For each pixel i ∈ J

one then defines the amoeba structuring element of radius % as the set of all pixels
j ∈ J for which a path P from i to j exists that has L(P ) ≤ %.
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Amoebas can be used in a straightforward way as structuring elements for e.g. dila-
tion, erosion, or median filtering.

Continuous amoeba filtering. [29] This procedure can easily be translated to a conti-
nuous-scale setting: Assume u : R2 ⊃ Ω → R is a smooth function over the compact
image domain Ω . The construction is understood best by considering the (rescaled)
image graph Γ := {(x, β u(x)) | x ∈ Ω} ⊂ Ω × R. Note that Γ is a section in the
bundle Ω × R. A continuous amoeba metric on Ω can then be defined by introducing
the infinitesimal metric ds := ϕ

(
‖dx‖, β |du|

)
on Γ , with ‖ · ‖ denoting some norm on

R2, and ϕ as above, and projecting it back to Ω . In general ds will be a Finsler metric.
For the special choice where ‖ · ‖ is the Euclidean norm, and ϕ ≡ ϕ2, the metric on
Γ is induced from the Euclidean metric on Ω × R, yielding a Riemannian metric ds
on Ω . In any case, it can be integrated along continuous curves in Ω , and gives rise to
distances d(x,y) between points x,y ∈ Ω . The continuous-scale amoeba A%(x) of
radius % around x ∈ Ω is then the set of all y ∈ Ω for which d(x,y) ≤ % holds.

Again, it is straightforward to conceive a continuous-scale amoeba filter: For each
location x ∈ Ω , one selects the neighbourhood A%(x). Using the Borel measure on Ω ,
the intensities u(y) for y ∈ A%(x) give rise to a density on (a subset of) R. The filtered
value v(x) is then obtained by applying an aggregation operator such as maximum (for
dilation), minimum (for erosion), or median to the density. For example, the median of
the density is the infimum µ of values z ∈ R for which u(y) ≤ z on at most half of the
area of A%(x); i.e. in generic cases the level line u(y) = µ bisects the amoeba area.

Continuous amoeba filtering of multivariate images. [13] The amoeba construction
can easily be transferred to images which take values inR = Rm, such as RGB colour
images (m = 3), planar flow fields (m = 2), or symmetric 2 × 2 matrices (m = 3).
Let a continuous-scale multivariate image u : R2 ⊃ Ω → Rm be given. Its graph
Γ := {(x, β u(x)) | x ∈ Ω} is a section in the bundle Ω×Rm. Choosing a norm ‖ · ‖R
on Rm one defines ds := ϕ

(
‖dx‖, β ‖du‖R

)
on Γ and obtains the amoeba metric by

projection to Ω . The construction of amoebas A%(x) then translates verbatim.
Multivariate amoeba filters can then be defined in the same way as grey-value filters,

provided suitable aggregation operators are available on the density of values u(y) ∈
Rm for y ∈ A%(x). Examples of such operators are supremum/infimum operators for
symmetric matrices [4, 3], multivariate medians [11, 13, 16, 20, 30] or quantiles [31].
We will discuss multivariate median concepts in more detail in the next section.

Specification of amoeba metric for this paper. We will focus on continuous-scale amoe-
ba filtering of bivariate images u : Ω → R2, where the amoeba metric is induced from
the Euclidean metric in Ω × R2 ⊂ R4, i.e. ‖ · ‖R is the Euclidean norm, and ϕ ≡ ϕ2.
From now on, we will refer to this setting as Euclidean amoeba metric.

3 Multi-Channel Median

Attempts to generalise the concept of median from the univariate setting to multivariate
data go back more than a century, see the work by Hayford from 1902 [11].
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L1 median. One of the most popular multivariate median concepts, which is nowadays
termed L1 median, has been introduced as early as 1909 by Weber to location theory
[23] and by Gini in 1929 to statistics [7]; it reappeared later in [1, 7, 24] and many other
works. The L1 median generalises the well-known property of the univariate median
to minimise the sum of distances to given data values on the real line; thereby, the L1

median of points a1, . . . ,an ∈ Rm is defined as

µL1(a1, . . . ,an) := argmin
x∈Rm

n∑
i=1

‖x− ai‖ (1)

where ‖ · ‖ is the Euclidean norm in Rm. The L1 median concept has been used in
image processing for symmetric matrices [30] as well as for RGB images [13, 20]. A
first attempt to derive the PDE approximated by such a median filter with non-adaptive
structuring elements has been made in [28], with a later correction in [27].

Affine equivariance. The L1 median is equivariant under similarity transformations of
Rm (combinations of Euclidean transformations and scalings): Let T be such a trans-
form; then we have µL1(T (a1), . . . , T (an)) = T (µL1(a1, . . . ,an)). However, the
univariate median is equivariant under much more general transformations, namely un-
der arbitrary strictly monotonous mappings of R. Given that a Euclidean structure is
often unnatural to impose on data sets, interest in alternative multivariate median con-
cepts that feature at least affine equivariance has arised. From the various concepts
developed for this purpose, see [19] for an overview, we mention two approaches.

Oja median. The first concept was introduced in 1983 by Oja [16] and termed simplex
median; nowadays also the name Oja median has gained popularity. It generalises the
same property of the univariate median as mentioned above. However, instead of view-
ing |x−ai| on R as a distance, it views it as measure of an interval on the real line, thus
a one-dimensional simplex. Replacing one-dimensional simplices with m-dimensional
ones, the simplex median is of points a1, . . . ,an ∈ Rm is defined as

µOja(a1, . . . ,an) := argmin
x∈Rm

∑
1≤i1<...<im≤n

|[x,a1, . . . ,am]| (2)

where |[x,a1, . . . ,am]| is the m-dimensional volume of the simplex spanned by the
m+ 1 points x,a1, . . . ,am.

Transformation–retransformation L1 median. An alternative approach is to upgrade
the L1 median to affine equivariance by a transformation–retransformation procedure
[5, 12, 17]. Here, an affine transformation is determined based on the covariance matrix
of input data, and the data thereby transformed to a normalised form with an isotropic
covariance matrix. Then the L1 median is computed and transformed back to the orig-
inal coordinates. This approach allows to combine the more favourable algorithmic
complexity of the L1 median, as compared to the Oja median, with affine equivariance.

In the context of iterated median filtering of multivariate images, the Oja median
has been studied in [26] for bivariate images; in [27] both Oja and transformation–
retransformation L1 median were considered in bivariate and trivariate settings, and
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PDEs approximated by both types of median filters with non-adaptive structuring el-
ements were derived. Compared to the PDE mentioned earlier for the standard L1

median filter, these PDEs are more favourable as their coefficient functions are sim-
pler, and coincide for both filter types. This means that, despite the fact that Oja and
transformation–retransformation L1 median of point sets are not the same, their corre-
sponding image filters can be viewed as different discrete realisations of the same affine
equivariant median filter concept [27].

Median concepts studied in this paper. Based on the encouraging findings in [27], we
focus here on affine equivariant median filters for bivariate images based on the Oja and
transformation–retransformation L1 median.

4 PDE for Affine Equivariant Bivariate Amoeba Median Filtering

To begin with amoeba median filtering with Oja median, we can state our first result.

Theorem 1. Let a bivariate image u : R2 ⊃ Ω → R2, (x, y) 7→ (u, v) be given, for
which the Jacobian Du of u has rank 2 throughout Ω . For fixed contrast scale β > 0,
and amoeba radius % → 0, one step of amoeba median filtering of u with Oja median
approximates a time step of size τ = %2/24 of an explicit scheme for the PDE system

∂tu = T 1(Du)∂ηηu+ T 2(Du)∂ξξu+ T 3(Du)∂ηξu (3)

where η is the major, and ξ the minor eigenvector of the structure tensor J := J(Du) :=
∇u∇uT +∇v∇vT = DuTDu. The coefficient matrices T i(Du), are given by

T i(Du) := RΘi

(
|∂ηu|, |∂ξu|

)
RT , i = 1, 2, 3 , (4)

Θ1(r, s) := diag
(
ϑ1(r), ϑ2(r, s)

)
, ϑ1(z) :=

1− 8β2z2

(1 + β2z2)2
, (5)

Θ2(r, s) := diag
(
ϑ2(r, s), ϑ1(s)

)
, ϑ2(w, z) :=

3

(1 + β2w2)(1 + β2z2)
, (6)

Θ3(r, s) := −2
(

0 ϑ3(r, s)
ϑ3(s, r) 0

)
, ϑ3(w, z) :=

w

z

1 + 4β2z2

(1+β2w2)(1+β2z2)
, (7)

where R = (Du−1)TPdiag
(
|∂ηu|, |∂ξu|

)
is a rotation matrix that aligns the princi-

pal components of the variation of u with the coordinate axes in both the (x, y) and
(u, v) spaces; P = (η | ξ) is the eigenvector matrix of J .

The proof of this theorem relies on two principles that allow to reduce the general
situation of the theorem to a sequence of more specialised cases, which are succes-
sively treated in three lemmas. The first of these principles has been established in [25]
where univariate amoeba median filtering was considered in a setting where a function
u was filtered using amoebas computed from a different function f . Then u influences
the filter result by the curvature of its level lines, whereas f exerts its influence via
the asymmetric shape of the amoeba. The decomposition of the effect of the amoeba
median filter into a curvature-related and an asymmetry-related part remains valid even
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when both functions are the same, and we will use it in the proof of Lemma 3. The
second principle is to use invariances of the amoeba construction and the median filter
to normalise the local geometry of a configuration. This was done in a non-adaptive
setting for the L1 median in [28] using Euclidean transformations, whereas [27] used
affine transformations to normalise the geometry for affine equivariant medians. In our
context, the amoeba construction as well as the median filters are Euclidean equivari-
ant which allows to align the function by rotations to one with diagonal Jacobian, see
Lemma 3. Deriving in this setting the amoeba shape from the bivariate function and
treating further the function being filtered and the amoeba separately, according to the
first principle above, allows to exploit the affine equivariance of the median filter for a
further normalisation, making the Jacobian of the function a unit matrix, see Lemmas 1
and 2. On this level, the result for non-adaptive bivariate median filtering from [27] can
be invoked for the curvature contribution, Lemma 1, whereas the asymmetry contribu-
tion is accessible to direct analysis via the definition of the Oja median, Lemma 2.

Lemma 1. (from [27], Lemma 2 there) Let u be given as in Theorem 1 with the origin
0 = (0, 0) in the interior of Ω . Assume that the Jacobian Du(0) is the 2×2 unit matrix
I , i.e. ux = vy = 1, uy = vx = 0. One step of Oja median filtering of u at 0 with
the disc D% of radius % as (non-adaptive) structuring element approximates an explicit
time step of size τ = %2/24 of the PDE system

ut = uxx + 3uyy − 2vxy , vt = 3vxx + vyy − 2uxy . (8)

The second lemma refers to the filtering of a linear bivariate function with amoeba
structuring elements computed from another function.

Lemma 2. Let u be given as in Theorem 1 with 0 in the interior of Ω , and Du(x) =
I for all x ∈ Ω . At 0, let an amoeba structuring element A(0) be given in polar
coordinates (r, ϕ) with x = r cosϕ, y = r sinϕ by its contour r(ϕ) = % − a(ϕ),
a(ϕ) := 1

2%
2β2(α1 cos

3 ϕ+ α2 cos
2 ϕ sinϕ+ α3 cosϕ sin2 ϕ+ α4 sin

3 ϕ). Then one
step of Oja median filtering of u at 0 approximates an explicit time step of size τ =
%2/24 of the PDE system

ut = −9β2α1 − 3β2α3 , vt = −3β2α2 − 9β2α4 . (9)

Proof (of Lemma 2). Due to the linearity of u, the Oja median of u within the disc
D%(0) with contour r(ϕ) = % equals u(0). We study how the perturbation of the
amoeba contour r(ϕ) by −a(ϕ) changes the gradient g of the objective function of (2)
at 0. Remembering that the Oja median is the minimiser for a sum of triangle areas in
the u-v plane, this means that we are interested in the net contribution of those triangles
which are added or removed when switching from the discD%(0) to the actual amoeba.
Neglecting a higher order error, the added or removed areas can be projected to the
circumference of the disc. We are therefore led to consider the gradients gB,A;M of
the areas of triangles MAB w.r.t. M , where M is the candidate median point, A ≡
A(ϕ) = (% cosϕ, % sinϕ) and B in the disc D%. Up to higher order terms, g will be
the resultant of gB,A;M for all such triangles, each weighted with −a(ϕ) and evaluated
at M = 0. Note that the weights −a can take either sign, depending on whether the
amoeba boundary is inside or outside the disc near A.
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For M = 0 the straight line MA bisects D%; thus, for each point B ∈ D% also the
point B′ obtained by reflecting B on MA is in D%. Thus, the gradients of the triangle
areas of MAB and MAB′ (w.r.t. M ) can be combined into the gradient gB,A,B′;M

of the area of the quadrangle MB′AB (a kite, a.k.a. deltoid). The vector gB,A,B′;M

is perpendicular to BB′ and proportional to 1
2 |BB

′|, the height of B over the line
MA. Thus, gB,A,B′;M = − 1

2 |BB
′|(cosϕ, sinϕ). Integration over B in a half-disc

yields the aggregated gradient for all triangles MAB with the point A as gA;M =

− 2
3%

3(cosϕ, sinϕ). Integrating over directions ϕ with weights −a(ϕ) yields

g =

∫ 2π

0

−aϕgA(ϕ);M dϕ = −%
6β2π

12

(
3α1 + α3

α2 + 3α4

)
. (10)

From the proof of Lemma 2 in [27] (i.e. Lemma 1 above) it can be read off that a
gradient g for (2) is compensated by a shift of M by g/(− 2

3π%
4) which means that the

median of u within the amoeba A(0) amounts to u(0) − β2

(
3α1 + α3

α2 + 3α4

)
, which is

exactly the time step for the PDE system (9) as claimed in the lemma.

Lemma 3. Let u be given as in Theorem 1 with the origin 0 = (0, 0) in the interior
of Ω . Assume that the Jacobian Du(0) is diagonal, with ux ≥ vy > 0, uy = vx = 0.
Then one step of amoeba median filtering with the Oja median at 0 approximates for
%→ 0 an explicit time step of size τ = %2/24 of the PDE system

ut = ϑ1(ux)uxx + ϑ2(ux, vy)uyy − 2ϑ3(ux, vy) vxy , (11)
vt = ϑ2(ux, vy) vxx + ϑ1(vy) vyy − 2ϑ3(vy, ux)uxy , (12)

with ϑ1,2,3 as in Theorem 1.

Proof (of Lemma 3). In [28, Sec. 4.1.2] the effect of an univariate amoeba median filter
step was analysed into two parts, a curvature contribution coming from the curvature of
level lines of the function being filtered, and an asymmetry contribution reflecting the
asymmetry of the amoeba. Interactions of the two manifest only in higher order terms
w.r.t. % that can safely be neglected in the PDE analysis. The same decomposition can
also be applied here. We denote by f the function obtained from u by linearisation at 0.
Then the curvature contribution at 0 is equivalent to a step of amoeba median filtering
of the function uwith the amoebaAf (0) computed from f , whereas for the asymmetry
contribution f is filtered using the amoeba Au(0) computed from u.

To start with the curvature contribution, Af (0) is an ellipse with half-axes %/U in
x direction, and %/V in y direction, with U :=

√
1 + β2u2x, V :=

√
1 + β2v2y . By

the affine equivariance of the Oja median, we can apply first to the x-y plane an affine
transform Txy with the transformation matrix M := diag(U, V ), so the amoeba is
turned into the disc D%, and the image into ũ with Jacobian Dũ = DuM−1. Second,
the u-v plane is transformed by an affine transform Tuv with the transformation matrix
Dũ−1 which yields a bivariate image û with unit Jacobian. Now the hypotheses of
Lemma 1 are satisfied for û. Using (8) for û and reverting Tuv and Txy yields the
curvature contribution

ucurvt =
uxx
U2

+
3uyy
V 2
− 2uxvxy

vyU2
, vcurvt =

3vxx
U2

+
vyy
V 2
− 2vyuxy

uxV 2
. (13)
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Turning to the asymmetry contribution, we compute the contour of Au(0) in a way
that after applying the same two affine transformations as before suits the hypothesis
of Lemma 2. To this end, consider the vector w∗ := (U cosϕ, V sinϕ), with U and
V as above, and normalise it to w := w∗/‖w∗‖. Then the directional derivatives of u
become ∂wu = (uxV cosϕ/G, vyU sinϕ/G), where G :=

√
V 2 cos2 ϕ+ U2 sin2 ϕ,

and ∂wwu = V 2

G2 cos2 ϕ∂xxu + 2UV
G2 cosϕ sinϕ∂xyu + U2

G2 sin
2 ϕ∂yyu. The point of

the amoeba contour in direction w is given up to higher order terms by rw where
r ≡ r(w) satisfies the condition

% =

∫ r

0

√
1 + β2|∂wu+ s∂wwu|2 ds . (14)

The r.h.s. of this equation is the length of a straight line in direction w under the Eu-
clidean amoeba metric. Note that the actual shortest path from 0 to the amoeba contour
under the amoeba metric can deviate from this line but as pointed out in [28, 4.1.2] this
deviation only influences higher order terms. Again up to higher order terms (14) can
be evaluated to

% = r
√
1 + β2|∂wu|2

(
1 + r

β2〈∂wu, ∂wwu〉
2(1 + β2|∂wu|2)

)
, (15)

r =
%√

1 + β2|∂wu|2

(
1− %β2〈∂wu, ∂wwu〉

2(1 + β2|∂wu|2)3/2

)
. (16)

Applying the affine transform Txy as above,w∗ becomes the vector (cosϕ, sinϕ), and
r(w) is transformed into r(ϕ) as in the hypothesis of Lemma 2 with

α1 =
uxuxx
U3

, α2 =
2uxuxy + vyvxx

U2V
, (17)

α3 =
uxuyy + 2vyvxy

UV 2
, α4 =

vyvyy
V 3

. (18)

The derivatives ux etc. herein refer to the untransformed function u. Applying further
Tuv as above, the setting is fully adapted to the hypothesis of Lemma 2. Reverting Tuv
and Txy on (9), then inserting (17), (18) yields the desired asymmetry contribution as

uasymt = −9β2u
2
xuxx
U4

− 3β2u
2
xuyy
U2V 2

− 6β2uxvyvxy
U2V 2

, (19)

vasymt = −3β2
v2yvxx

U2V 2
− 9β2

v2yvyy

V 4
− 6β2uxvyuxy

U2V 2
. (20)

Combining (13) and (19), (20) as ut := ucurv
t + uasym

t yields (11), (12).

Proof (of Theorem 1). Consider a bivariate image u with regular Jacobian. By transla-
tion invariance, it can be assumed that the filter is considered at location 0. As eigenvec-
tors of the structure tensor, η and ξ are orthonormal. Moreover, the directional deriva-
tives of u in these directions, i.e. Du · η and Du · ξ, are orthogonal. Thus both the x-y
plane and the u-v plane can be rotated in order to align these orthogonal pairs with the
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respective coordinate axes. For the x-y plane, this is achieved using the rotation matrix
P ; for the u-v plane, taking into account the non-unit lengths of the two orthogonal
vectors, one obtains R−1 as the appropriate rotation matrix. Applying both rotations
yields a bivariate image that satisfies the conditions of Lemma 3. Applying the inverse
rotations to (11), (12) yields the PDE system stated in (3)–(7).

We turn now to the second affine equivariant median filter under consideration, the
transformation–retransformation L1 median. As in the case of non-adaptive filtering
[27], we find that it approximates the same PDE as the Oja median filter.

Theorem 2. Let a bivariate function u : Ω → R2 with Du of rank 2 be given as in
Theorem 1. For % → 0, one step of amoeba median filtering with the transformation–
retransformation L1 median approximates a time step of size τ = %2/24 of the same
PDE (3)–(7) as for the Oja median.

Proof (of Theorem 2). We follow the same strategy as for Theorem 1. Euclidean and
affine transformations can again be used to reduce the generic geometric setting to the
hypotheses of Lemma 3 and further to the hypotheses of Lemmas 1 and 2. As pointed
out in [27, Sec. 3.1.5], this reduction procedure reproduces the transformations of the
transformation–retransformationL1 median. Thus, it remains to secure statements anal-
ogous to Lemmas 1 and 2 for the standard L1 median. As for Lemma 1, this is a special
case of Lemma 1 from [27]. To prove the L1 analogue of Lemma 2 one calculates the
gradient of the objective function of (1), which is even easier than for the Oja median
because, adopting notations from the proof of Lemma 2, said gradient is composed just
of the vectors MA = (cosϕ, sinϕ) with appropriate weighting.

Remark 1. In the univariate case an interesting relation holds between the PDEs asso-
ciated with non-adaptive and adaptive median filters: The self-snakes PDE [18] ut =
|∇u|div

(
g(|∇u|)∇u/|∇u|

)
– the limit case of the amoeba filter – is obtained from

the curvature motion PDE ut = |∇u|div
(
∇u/|∇u|

)
– the limit case of the nonadap-

tive filter – by inserting the edge-stopping function g within the divergence expression.
We have to defer a more detailed discussion of the PDE system (3)–(7) to future

work. In this context, an interesting question to be answered will be whether a relation
similar to that between univariate self-snakes and curvature motion can be established
between (3)–(7) and the PDE system derived in [27] for the non-adaptive case.

5 Experiments

We validate our PDE approximation results in the axis-aligned setting of Lemma 3
for eight simple bivariate example functions u = (u, v) given by u(x, y) = uxx +
1
2uxxx

2 + uxyxy +
1
2uyyy

2, v(x, y) = vyy +
1
2vxxx

2 + vxyxy +
1
2vyyy

2, where all
derivatives refer to the location (0, 0). The example functions are collected in Table 1.

For the functionsu and their linearisations f , we compute approximations of amoeba
structuring elements Au% (0) and Af% (0) with contrast scale β = 1 and amoeba radius
% = 1 on a discrete Cartesian grid with sample distance h = 0.015. For good approxi-
mation of rotational invariance, we base our amoeba computation on neighbourhoods of
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radius h
√
10, which include 36 points instead of 4- or 8-neighbourhoods. (This makes

sense for our fairly smooth example functions; in an image filtering application, how-
ever, the use of such large neighbourhoods would spoil the adaptation of amoebas to
fine image details.) The sizes of these amoebas are also given in Table 1.

The Oja and transformation–retransformation L1 medians of u within Af% (0) are
then computed by gradient descent methods, see [27], and compared with the isolated
curvature contribution (13). In the same way, the medians of f within Au% (0) are com-
puted and compared with the isolated asymmetry contribution (19), (20), and the me-
dians of u within Au% (0) with the full PDE system (11), (12). In Table 2 the results of
median computations and the corresponding time steps with size τ = %2/24 are given.

As can be seen, the results of both median filters agree well with the PDE time
steps for the first six example functions a–f in which only one second-order coefficient
is nonzero, with deviations in the order of 10−4. In the last two examples g, h where
all six second-order coefficients are nonzero, there are deviations in the order of 10−3

for individual coordinates. However, these deviations are well within the range to be
expected for the given grid discretisation.

6 Summary and Outlook

We have derived a PDE approximated by amoeba median filtering of bivariate images
with the affine equivariant Oja median or transformation–retransformation L1 median,
for Euclidean amoeba metrics. Numerical computations on sampled test functions con-
firmed the approximation. A more detailed discussion of the PDE will be a subject of
forthcoming work where also the degenerate case detDu = 0 that we excluded here
(as before in [27]) should be investigated.

Our hope is that the result presented will contribute to a deeper understanding of
adaptive filtering and the relations between morphological and PDE-based image filters.
We are optimistic that we will be able in our ongoing work to extend the result to
practically more meaningful cases such as three-channel planar or volume images, such
as done in [27] for non-adaptive median filters.
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22. Verdú-Monedero, R., Angulo, J., Serra, J.: Anisotropic morphological filters with spatially-
variant structuring elements based on image-dependent gradient fields. IEEE Transactions
on Image Processing 20 (2011) 200–212
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