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Abstract. The fundamental operations of mathematical morphology
are dilation and erosion. In previous works, these operations have been
generalised in a discrete setting to work with fields of symmetric matrices,
and also corresponding methods based on partial differential equations
have been constructed. However, the existing methods for dilation and
erosion in the matrix-valued setting are not overall satisfying. By con-
struction they may violate a discrete extremum principle, which means
that results may leave the convex hull of the matrices that participate in
the computation. This may not be desirable from the theoretical point
of view, as the corresponding property is fundamental for discrete and
continuous-scale formulations of dilation and erosion in the scalar set-
ting. Moreover, if such a principle could be established in the matrix-
valued framework, this would help to make computed solutions more
interpretable.
In our paper we address this issue. We show how to construct a method
for matrix-valued morphological dilation and erosion that satisfies a dis-
crete extremum principle. We validate the construction by showing ex-
perimental results on synthetic data as well as colour images, as the latter
can be cast as fields of symmetric matrices.
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1 Introduction

Images that take symmetric matrices as values arise in several ways in image
acquisition and processing. For example, in diffusion tensor MRI [17] they re-
sult from the measurement of second-order diffusion tensors. Fields of structure
tensors [13] arise as derived quantity within many image processing methods
such as anisotropic diffusion [20] or variational optic flow computation [5]. By
a transform introduced in [6, 7], see also [8], colour images can be transformed
into fields of symmetric matrices.

Over the last two decades, many image processing methods have been de-
vised for (symmetric) matrix-valued images, see e.g. the edited volumes [15, 21,
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24]. In particular, a framework of matrix-valued morphology has been built up,
starting from the seminal work of Burgeth et al. [10, 11] in which matrix-valued
dilation and erosion operations were introduced. Continuous-scale matrix-valued
morphology was established in [9]. Applications to colour images are found in
[3, 6, 7, 14].

In their classical formulation morphological dilation and erosion are local
filters in which image values from a neighbourhood of each image location are
selected by a mask (or structuring element) and aggregated by taking the maxi-
mum and minimum, respectively. Since the application of the structuring element
does not depend on the range of the image values being selected, the essential
step in extending dilation and erosion to matrix-valued images is an appropriate
generalisation of the maximum and minimum operations.

The concept of matrix-valued dilation and erosion from [10] relies on the
combination of the Loewner ordering [16] as a partial order on symmetric ma-
trices with the concept of total ordering by the trace of occurring matrices. In
order to define the supremum of a set of symmetric matrices, one considers the
set of all matrices that are greater than or equal to all given matrices w.r.t.
the Loewner order, and chooses from this upper bound set the minimal element
w.r.t. the trace total order. The criterion for choosing the minimal element from
the upper bound set may be varied, leading to variants of the dilation and erosion
operations, see [22, Sect. 2.4].

Clearly, the so-defined supremum and infimum generalise the scalar max-
imum and minimum operations underlying classical grey-value morphology in
the sense that also the maximum of grey-values can be understood as the small-
est value that is greater or equal to all grey-values from an input set. On the
other hand, a sacrifice is made for this: In classical morphology, dilation and
erosion and their compositions never extend the range of grey-values of an input
set. This is of particular importance when the continuous limit of morphological
operations is considered, giving rise to the partial differential equations (PDEs)
of continuous-scale morphology [1, 4, 19]: These PDEs then fulfil an extremum
principle. Unfortunately, this is no longer true for the matrix-valued dilation
and erosion based on [10]; in general the supremum of a set of matrices will
have a strictly greater trace than each of them; likewise for the infimum. We are
therefore led to ask whether variants of matrix-valued dilation and erosion can
be devised that allow for an extremum principle.

Taking a more principled approach to the scalar operations of classical mor-
phology, we can identify two essential features of the maximum (and analogously
for the minimum):

(i) The maximum of given input values is greater or equal to each of them.
(ii) The maximum of given input values is contained in their convex hull.

We remark that the scalar-valued maximum even happens to coincide with one
of the input values. On one hand, in the context of multivariate data such a
requirement would lead to discontinuous dependence on the input data and of-
ten result in values that do not represent the input data adequately. One might
compare also the situation for median filtering of multivariate images, see [23],
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where filters that select only among the input values have turned out too restric-
tive. On the other hand, individual values of an image normally result from a
sampling process, and are just representatives of a larger set. By admitting con-
vex combination (averaging) which occurs in sampling in a natural way anyway,
(ii) provides a conservative estimate of the underlying set of values. We are thus
convinced that (ii) is the essential property of the maximum in this context.

The matrix dilation from [10] guarantees property (i) at the expense of giving
up (ii). The trace criterion or its alternatives serve as a way to minimise the
degree of violation of (ii). In turn, the exact fulfilment of (ii) is what underlies
the extremum principle.

As for a given set of symmetric matrices, its upper bound set will in general
be disjoint from its convex hull, so that (ii) can be enforced only at the expense
of tolerating violations of (i). We aim therefore at finding matrix-valued re-
placements for the scalar maximum/minimum operations that satisfy (ii), while
minimising the degree of violation of (i) in a suitable sense.

Our contribution and outline of the paper. The structure of the paper is adapted
to the goals formulated above. In Section 2 we show how to construct an optimi-
sation procedure based on an interior point method that satisfies property (ii)
while minimising the violation of property (i). In doing this, our method is to
our best knowledge the first one proposed intentionally with the purpose to ful-
fil the mentioned essential aim. With the help of experiments on synthetic data
sets as well as dilation and erosion of colour images, we validate our proceeding
as discussed in Section 3. As indicated we conjecture that the results obtained
with our method are more intuitive than those obtained with previous methods
that violate the extremum principle. We end our paper by a conclusion which
indicates the potential of the proposed method for future developments.

2 Matrix Pseudomaximum and Pseudominimum with
Extremum Principle

In this section we proceed by giving technical details of the underlying model
for decomposing symmetric matrices, see e.g. [23] for related developments in
addition to the works mentioned above. After that we give as indicated details
on the algorithmic realisation of property (ii).

2.1 Theoretical Background of the Model

For a given matrix Y ∈ Sym(n) we define N(Y ) as the square sum of its negative
eigenvalues,

N(Y ) :=
1

2

n∑
j=1

[λj(Y )]2− (1)

where λj(Y ) is the j-th-largest eigenvalue of Y and [z]− := 1
2 (|z|− z) for z ∈ R.

This can be seen as a penaliser for the degree of violation of the relation Y � 0
where � is the Loewner ordering and 0 ∈ Sym(n) the zero matrix.
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For a given (multi-) set

X := (X1, . . . ,Xm) , Xi ∈ Sym(n) (2)

we define the pseudomaximum
∨∨∨

(X ) as the matrix from the convex hull conv(X )
of X for which the total measure of violations of Y �Xi is minimal:

∨∨∨
(X ) := argmin

Y ∈conv(X )

EX (Y ) , EX (Y ) :=

m∑
i=1

N(Y −Xi) . (3)

Abbreviating −X := (−X1, . . . ,−Xm), the pseudominimum
∧∧∧

(X ) is defined as∧∧∧
(X ) := −

∨∨∨
(−X ) . (4)

2.2 Analysis

If Y ∈ Sym(n) has the spectral decomposition

Y =

n∑
j=1

λjwjw
T
j (5)

with eigenvalues λj and unit eigenvectors wj , then the directional derivative of
the j-th-largest eigenvalue in direction of a perturbation matrix Z ∈ Sym(n) is

dλj(Y + εZ)

dε

∣∣∣∣
ε=0

= wT
j Zwj . (6)

From this it follows that the one-sided derivative of N(Y ) w.r.t. Z is

dN(Y + εZ)

dε

∣∣∣∣
ε=0+

=
∑
j∈T −

λjw
T
j Zwj (7)

where T − := {j ∈ {1, . . . , n} | λj < 0}.
The objective function EX in (3) is convex. Whereas we have to defer a

detailed proof to a future paper, we mention an important observation which
is used in the proof: Let N∗ > 0 be given, and dilate the cone of positive
semidefinite matrices from Sym(n) with the Euclidean ball of radius

√
N∗ as

structuring element. This results in a convex set in Sym(n), the boundary of
which (a hypersurface) is the set of all Y that fulfil N(Y ) = N∗. For example, in
Sym(2) this set is a cone (open toward the direction of increasing trace) with its
tip truncated and replaced with a sphere segment. With additional calculations
it follows that N(Y ) is convex. The same is true for EX which is the sum of
translated copies of N(Y ). By refining the argument, it can be shown that the
convexity is even strict within the convex hull of input data.

Therefore (7) can be used to construct a gradient descent algorithm similar
to an interior point method [12] for the pseudomaximum: One starts at some
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location in conv(X ) and continues by update steps within the convex hull as
long as EX can be reduced. As initialisation, one might simply choose the Xi

with maximal trace; update steps for Y within the convex hull can be devised
as moving towards any Xi 6= Y . This can be realised with Z := Xi − Y and
a suitable step size which should be chosen small enough so that the sign of no
relevant eigenvalue of any Y −Xi changes within the update step.

The pseudomaximum (3) is a weighted average of some Loewner-maximal
input matrices, i.e. those which are not Loewner-less or equal to any other in-
put matrix. If there is only one Loewner-maximal input matrix, which is then
Loewner-greater or equal to all other input matrices, it is the pseudomaximum
(and in this case also the matrix supremum as defined in [10]).

2.3 Exposition on the Algorithm

Given X as above, our algorithm for finding
∨∨∨

(X ) proceeds as follows.

Initialisation. Let Y0 := argmaxY ∈X trace(Y ) .
Iteration. For k = 0, 1, . . .:

1. For each i = 1, . . . ,m:
Compute the spectral decomposition of Dk,i := Yk −Xi:

Dk,i =

n∑
r=1

λk,i,rwk,i,rw
T
k,i,r . (8)

2. Determine the index set

T −k := {(i, r) | λk,i,r < 0} . (9)

3. For each j = 1, . . . ,m:
Let Dk,j be defined as in Step 1. For (i, r) ∈ T −k let

dk,j,i,r := λk,i,rw
T
k,i,rDk,jwk,i,r . (10)

Let
gk,j := −

∑
(i,r)∈T −

k

dk,j,i,r . (11)

4. Let
(j∗(k), gk) := (argmin,min)j=1,...,m gk,j . (12)

5. If gk ≥ 0, stop; Yk is the sought minimiser.
Otherwise choose a step size τk which fulfils

2τkdk,j∗(k),i,r ≤ |λk,i,r| for all (i, r) ∈ T −k , τk ≤ 1 (13)

and let
Yk+1 := Yk − τkDk,j∗(k) . (14)

Check whether E(Yk+1) < E(Yk); if this is not the case, choose a smaller
value for τk and repeat (14).

6. Numerical stopping criterion: If |E(Yk+1) − E(Yk)| is below a predefined
threshold, stop; Yk+1 is an approximation to the sought minimiser.
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3 Experiments

In this section we show the effect of morphological dilation and erosion using
the pseudomaximum and pseudominimum of symmetric matrices introduced in
Section 2. We will shortly denote these operations as X-dilation and X-erosion
(X standing for “obeying extremum principle”).

For comparison, we use morphological dilation using the matrix supremum
from [10] which we will denote as L-dilation (L indicating the strict Loewner
order between the supremum and the input data guaranteed by this approach),
and two versions of the morphological erosion using matrix infima as defined in
[10] and [7]. In [10], the infimum of positive definite matrices is defined as the
matrix inverse of the supremum of the matrix inverses of the input matrices;
this definition is suitable for positive definite matrix data as it is designed to
preserve positive definiteness. In contrast, [7] uses an infimum that is minus
the supremum of the sign-inverted input matrices. The latter definition cannot
guarantee positive definite results even for positive definite input matrices; it is
suitable for matrix data the eigenvalues of which can take either sign. We will
denote the first variant as LP-erosion (P standing for “positive definite”), and
the second one as LI-erosion (I for “indefinite”). Note that no such distinction
is needed for X-erosion because by virtue of the extremum principle (4) can be
used also for positive definite matrices.

Experiment 1: Synthetic Data. We start with an experiment on synthetic data.
Figure 1 a shows an array of 100 symmetric positive definite 2 × 2 matrices A
depicted by ellipses xTA−1x = 1. For the subsequent morphological operations
we use a structuring element containing all pixels with distance ≤ 2 from the
centre (as shown for one exemplary pixel in the figure), and reflecting boundary
conditions.

Frame b shows the result of L-dilation. Whereas in regions with well-aligned
eigensystems (as near the lower boundary of the array) larger values are nicely
propagated, the dilation creates matrices exceeding all contributing input matri-
ces when these are not well aligned (as near the top boundary). Frame c shows
the result of X-dilation, i.e. obtained using the proposed framework. In regions
with well-aligned eigensystems the result is similar to that of L-dilation. In non-
aligned regions, still larger eigenvalues are propagated but by the restriction to
the convex hull of contributing input matrices no amplification of values is ob-
served. Frames d and e in the bottom row of Figure 1 show a similar effect for
LP-erosion and X-erosion.

Let us note that the amplification of values as observable within the results
of L-dilation could be interpreted as a potential trace of instability in the context
of a PDE-based formulation.

Experiment 2: Colour Imagery. In our second experiment we apply the matrix-
valued morphological operations to filter colour images. A correspondence be-
tween colour images and fields of Sym(2) matrices was established in [6]. This
correspondence is mediated by the HCL (hue–chroma–luminance) colour space.
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a b c

d e

Fig. 1. Synthetic matrix morphology example. a Original data set consisting of sym-
metric positive definite 2×2 matrices A (depicted by ellipses xTA−1x = 1). Thin lines
delineate one exemplary pixel and its corresponding structuring element. – b L-dilation
following [10]. – c X-dilation. – d LP-erosion following [10]. – e X-erosion.

From a given RGB triple (r, g, b), chroma c is obtained by c := M −m where
M := max{r, g, b}, m := min{r, g, b}, luminance l by l := 1

2 (M −m) and hue h
by D+ 1

6d/M mod 1 where d := g−b, D := 0 for r ≥ g, b, d := b−r, D := 1/3 for
g ≥ r, b, d := r−g, D := 2/3 for b ≥ r, b. A symmetric 2×2 matrix A = A(r, g, b)
is then obtained by

A :=
2l − 1√

2

(
1 0
0 1

)
+

c√
2

(
− sin(2πh) cos(2πh)
cos(2πh) sin(2πh)

)
. (15)

For further details see [6, 8, 14]. By this transformation a bijection between the
RGB colour space and a compact convex set of symmetric matrices (namely, a
bi-cone) is established, see Figure 2.

Following the procedure from [6], we can now wrap matrix-valued dilations
and erosions in the RGB–Sym(2) transform (15) and its inverse to obtain dila-
tions and erosions for colour images. In this case, the infimum-based erosion is
chosen as LI-erosion because the bi-cone of matrices is symmetric about zero. Our
comparison therefore includes L-dilation, LI-erosion, X-dilation and X-erosion.

However, as pointed out in [6], a difficulty arises for L-dilation and LI-erosion
as the supremum and infimum of matrices may generate values outside the bi-
cone to which RGB colours are mapped. In [6, 7], an additional transform is
therefore proposed to map back the supremum and infimum into the bi-cone.
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For better comparison with X-dilation and X-erosion which do not require
such a transform due to their built-in extremum principle, we omit the additional
transform also for L-dilation and LI-erosion. Effectively, overshooting matrix
values are just projected to the admissible colour range (sacrificing invertibility
for these values).

Our colour test image is shown in Figure 3 a;

x y

z

Fig. 2. Color bi-cone, figure
adapted from [7]

two zoom-ins are shown in Figure 4 a, f. As in the
previous experiment, we use the 13-pixel structuring
element shown in Figure 1, and reflecting boundary
conditions. Frames b and c of Figure 3 show the
results of L-dilation and X-dilation, respectively, see
also the clippings in Figure 4 b, c and g, h.

As expected, both operations extend bright struc-
tures. However, at locations where regions of compa-
rable brightness but different colours meet, as in the
region of Figure 4 a, the supremum-based dilation
generates artificial colours brighter than their sur-
rounds. This is not the case for X-dilation; instead,
colours of similar brightness mutually retard their propagation. The difference
image in Figure 4 k confirms this effect. In contrast, the clipping in Figure 4 f
has fairly similar dilation results, see also the difference image in frame l. Here,
adjacent colours are sufficiently similar or differ substantially in brightness such
that the brighter colour can be propagated without generating artificial colours
or exaggerating brightness.

Analogous observations can be made for erosion, see Figure 3 d, e as well as
Figure 4 d, e, i, j (clippings) and l, m (difference images). Again, LI-erosion leads
to brightness undershoots and artificial colours (albeit visually less pronounced
due to their dark appearance) which are safely avoided by X-erosion.

Experiment 3: Discontinuous Synthetic Colour Images Making use of the same
framework for colour images as in the previous paragraph, we now consider a
particularly simple setting for colour images in which the interaction of colours
during filtering is easily observed. Modifying the type of our experiments, we will
now compare the proposed method with the PDE-based scheme built upon the
discretisation of Rouy and Tourin [18], which was used as a building block in [2],
and with the lattice-based dilation/erosion procedure from [6, 7], this time with-
out any modification. We denote by RT-dilation and RT-erosion, respectively,
the PDE-based results.

Let us note that the method of Rouy and Tourin is given by a first-order
scheme. On one hand, this means that in the scalar case it is known to introduce
blurry artefacts, compare again [2]. On the other hand, this is why it satisfies by
construction in the scalar case the extremum principle as discussed in this work.
Thus, any potential over-/undershoots that could be observed in results are due
to the maximum respectively minimum construction as used in previous work.

In Figure 5 we show the results of the experiment. Let us note that images
are of very small size so that we see in practice a zoom on results. We have
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a b c

d e

Fig. 3. Colour morphology example. a Original colour image peppers, 512×512 pixels.
– b L-dilation similar to [7]. – c X-dilation. – d LI-erosion similar to [7]. – e X-erosion.

done just one step of dilation/erosion with the discrete methods using a small
3× 3 structuring element, which corresponds to two steps with the RT method.
The results by the original lattice-based method displayed in the second col-
umn clearly show the effect of leaving the convex hull of values. The remarkable
colour mixture is due to the colours chosen in the experiment and their arrange-
ment in the color bicone. The RT-scheme, the results of which are shown in
the second column, displays some blurry artefacts, yet one also observes clearly
similar effects of leaving the convex hull of colours as with the previous method.
The results obtained by the proposed method as given in the third column are
obviously much more intuitive for interpretation. Still we observe some mixing
of the colours, which is due to the choice of our objective function within the
optimisation: if there exist multiple input values not dominated by others in the
underlying partial order, none of which can therefore well represent the input
set, a compromise between them is found.

4 Summary and Conclusion

We have shown that the use of the convex hull of matrices within the structuring
element of matrix-valued dilation/erosion appears to be a suitable generalisation
of the corresponding property in the scalar setting. The computational results
confirm favourable stability properties in comparison to other methods in the
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a b c d e

f g h i j

k l m n

Fig. 4. Colour morphology example, continued. a, f Two zoomed details from peppers
image, 100 × 100 pixels each. – b, g L-dilation. – c, h X-dilation. – d, i LI-erosion. –
e, j X-erosion. – k Difference of b and c. Middle grey represents zero, brighter colours
represent positive differences, darker colours negative differences. – l Difference of g
and h. – m Difference of d and e. – n Difference of i and j.

a b c d

e f g

Fig. 5. Colour morphology example with simple images. This test is designed to observe
in detail the effect of the extremum principle. a Original colour image, 8×8 pixels. – b
L-dilation of [7]. – c RT-dilation. – d X-dilation. – e LI-erosion of [7]. – f RT-erosion.
– g X-erosion.
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field and encourage further investigation. In this context, also generalisations of
the objective function used in our optimisation will be considered. It will also be
of interest to which extent algebraic properties of classical scalar-valued dilation
and erosion, such as adjunction, can be transferred to a matrix-valued setting.

Let us elaborate some more on the potential implications of our results. From
the theoretical perspective of numerical analysis of a potential PDE-based in-
terpretation the validity of the discrete extremum principle is a fundamental
property in classic theory of numerical schemes. This holds in particular for the
underlying PDEs of dilation and erosion in the scalar case which are Hamilton-
Jacobi equations. It is a cornerstone of numerical analysis of PDEs that a stabil-
ity notion such as an extremum principle together with consistency could enable
to prove convergence of the underlying scheme. Thus our paper may form the
first step towards the numerical analysis of a matrix-valued PDE.

Turning to possible implications on the more practical side, our new matrix-
valued dilation and erosion provide an interesting basis for building more com-
plex morphological procedures. For instance, they appear well-suited as a build-
ing block for morphological levelings. In the near future we aim to explore this
possibility and evaluate the performance of the proposed concept in that context.
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