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Abstract. We introduce an algorithm for active contour segmentation
in which the level set function encoding the contour is processed by me-
dian filtering using morphological amoebas. These are adaptive structure
elements introduced by Lerallut et al. which can be combined with differ-
ent morphological operations. Recently it has been proven that iterated
amoeba median filtering of an image approximates the well-known self-
snakes partial differential equation. Following this approach we prove a
partial approximation property of amoeba active contours with respect
to geodesic active contours. Experiments prove the viability of the algo-
rithm and confirm the theoretical results.
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Proceedings of Third International Conference on Scale Space and Variational Meth-
ods in Computer Vision, Ein Gedi, Israel, May 30–June 2, 2011.
To appear in Lecture Notes in Computer Science.
c©Springer-Verlag, Berlin/Heidelberg, 2011

The concept of morphological amoebas for structure-adaptive morphological fil-
tering has been introduced by Lerallut et al. [19, 20]. In this approach, structure
elements adapt flexibly to image structures by taking into account spatial dis-
tance of pixels as well as image contrast. By penalising large deviations in image
values, amoebas can grow around corners or along anisotropic image features.
Once amoeba structure elements are constructed, a great variety of morpholog-
ical filters can be applied.

One candidate for the filtering step is median filtering which assigns to each
pixel the median of all grey-values of the given image within the structure ele-
ment as its new grey-value. A classic result by Guichard and Morel [13] estab-
lishes a relation to partial differential equation (PDE) based image filtering: In
its continuous-scale limit median filtering approximates mean curvature motion
[2], i.e. the PDE ut = |∇u| div(∇u/|∇u|).

Median filtering with amoeba structure elements has been investigated in [19,
20]. In [29] it was proven that iterated amoeba median filtering approximates
the self-snakes image filter PDE [23, 30], i.e. that a space-continuous formulation
of amoeba median filtering asymptotically equals a time step of the self-snakes
evolution. As in [13] the time step size goes to zero with the square of the radius
of the structure element (amoeba).

Self-snakes stand in close relationship to geodesic active contours [9, 15], a
well-established PDE method for image segmentation. In view of the approxima-
tion property between amoeba median filtering and self-snakes it is natural to
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ask whether a similar amoeba-based process can be designed that performs an
active contour segmentation. In this paper, we will demonstrate that this is in-
deed possible and that the resulting algorithm has similar properties as geodesic
active contours. For a special case we will prove an approximation property in
the same sense as in [13, 29]. While the main contribution of the present paper
is of theoretical nature, the new discrete approach to active contours might also
turn out useful in applications because nonstandard discretisations of this kind
may reduce e.g. numerical dissipation effects that are difficult to circumvent with
finite-difference schemes.

Related work. The discrete filters that are in the focus of the present paper take
their motivation from two sources: first, the classic median filter as introduced
by Tukey [26] which has developed into a standard tool in image processing
later on, see e.g. [16]; second, the idea of image-adaptive structure elements [6,
7, 24, 28] which also includes Lerallut et al.’s morphological amoebas [19, 20].
The space-continuous description of amoebas resorts to the representation of an
image by an image manifold which has been used in the context of the Beltrami
framework [14, 31] and also underlies the bilateral filter [3, 25].

Geodesic active contours were formulated by Caselles et al. [9] and Kichenas-
samy et al. [15], based on earlier work on active contours [8, 21].

The paradigmatic PDE approximation result by Guichard and Morel [13] for
the median filter has been followed by results for further discrete filters [3, 11,
27], for amoeba median filtering see [29].

Structure of the paper. In Section 2 we describe morphological amoebas and
develop the amoeba active contour algorithm. By a space-continuous analysis
in Section 3 approximation of the geodesic active contour PDE is proven in the
radially symmetric case. Experiments demonstrate the viability of the approach,
and its similarity to geodesic active contours, see Section 4. Conclusions are
presented in Section 5.

2 Amoeba Active Contour Filtering

Let us recall first the principle of amoeba filters as introduced in [19, 20].
The first step of any amoeba filter consists in the construction of image-

adaptive structure elements, called amoebas, for all pixels in the image. The
structure element for pixel p is made up by those pixels which are close to p
in some amoeba metric. Instead of considering only the spatial distance in the
image domain, as for non-adaptive morphological structure elements, the amoeba
metric measures the distance of pixels along the image manifold, i.e. a surface
interpolating the R

3 points (x, y, σf(x, y)). Here, (x, y) are point coordinates in
the image domain, f(x, y) is the grey-value at (x, y), and the scaling parameter
σ > 0 weights grey-value differences (tonal distances) against spatial distances.

In the second step, some morphological operation is applied to the image with
the previously computed structure elements, such as dilation, erosion, opening or
closing. As a particularly interesting example, median filtering has been studied



M. Welk: Amoeba Active Contours, SSVM 2011 3

in [19, 20, 29]. Like the non-adaptive median filter, this filter can be iterated,
giving rise to iterated amoeba median filtering.

Space-discrete and space-continuous amoeba metrics. Concerning the
amoeba metric, let us discuss first the space-continuous setting. Natural choices
for the Riemannian metric on the image manifold {(x, y, σf(x, y))} are those in-
duced by metrics in the embedding space R

3. The simplest case, the Euclidean
metric, leads to the amoeba metric ds2 = d2s

2 = dx2 + dy2 + σ2df2. An al-
ternative is an L1 metric ds = |dx| + |dy| + σ|df | which, however, lacks the
desirable rotational invariance in space and will not be considered further here.
As a compromise, one can choose a combined L2-L1 metric that is Euclidean in
the two spatial dimensions but L1 in combining the spatial and tonal distances,
ds = d1s =

√

dx2 + dy2 + σ|df |. A straightforward generalisation is

ds = dϕs = ϕ
(

√

dx2 + dy2, σ df
)

(1)

where ϕ is a twice differentiable nonnegative function, homogeneous of degree 1,
strictly increasing in both variables, and fulfils the triangle inequality, see [29].

The distance d(p, q) between two points p = (xp, yp, σfp), q = (xq , yq, σfq)
on the image manifold is the minimum of the expression

Lϕ(C) :=

∫

C

dϕs , (2)

taken over all curves C on the image manifold that connect p and q. Note,
however, that for q → p and smooth u, this distance is asymptotically equal to
the corresponding distance of p and q in R

3, i.e.

d(p, q) ≈ ϕ

(

√

(xp − xq)2 + (yp − yq)2, σ|fp − fq|
)

. (3)

In a digitised image, a space-discrete formulation of the distance measure-
ment is used. Following [19, 20, 29] d(p, q) is the minimum of

Lϕ(c) :=
m−1
∑

k=0

ϕ
(

√

(xk − xk+1)2 + (yk − yk+1)2, σ|fk − fk+1|
)

(4)

over all discrete curves (p0 = p, p1, . . . , pm = q), where pk = (xk, yk, σfk). A
discrete curve is a sequence of points in which each pair of subsequent points are
neighbours in the image domains. In [19, 20], this model is used with dϕ ≡ d1
and 4-neighbourhoods, while [29] uses general dϕ and 8-neighbourhoods. We will
follow the latter model, notwithstanding that, as [29] mentions, accuracy could
be further improved by digital distance transforms [4, 5, 17, 18].

Active contours. In an active contour algorithm [8, 21], a contour curve evolves
from some initial shape towards a shape that separates the given image into two
segments (typically, a foreground object and the background). The initial shape
is provided either by user interaction or some automatic method.
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The evolution equation for geodesic active contours [9, 15] is given by

ct = (g(|∇f |)κ− 〈∇g(|∇f |),n〉)n (5)

where n is the inward normal vector, and κ the curvature of the contour curve c.
The nonnegative “edge-stopping function” g depends monotonically decreasing
on the local gradient of the input image f . The name geodesic active contours
indicates that the contour found by this evolution is a local minimum of the arc
length, thus, a geodesic, in some image-dependent metric.

The contour c that evolves according to (5) can be represented in different
ways, which leads to different implementations of the active contour method.
The concept of a contour as parametric curve leads to a representation by
sample points. This is on one hand comparably efficient since it represents a
curve as a truly one-dimensional object; on the other hand, the evolution of
sample points to inter-pixel positions necessitates interpolation. Moreover, due
to length changes of the evolving curve over- and undersampling occurs, re-
quiring re-sampling steps in the algorithms. Further difficulties are encountered
when segments with multiple connected components cause the need for topology
changes in the contour.

Alternatively, level-set methods [22] represent the contour c as zero-level set
of a function u over the two-dimensional image domain. For example, a signed
distance function of the contour can serve this purpose. The evolution equation
(5) is then rewritten into an evolution of u = u(x, y, t) as

ut = |∇u| div
(

g(|∇f |) ∇u

|∇u|

)

= g(|∇f |)uξξ + 〈∇g,∇u〉 (6)

where ξ denotes a unit vector in level line direction of u, ξ ⊥ ∇u. Topology
changes are implicitly handled in this case, and resampling becomes a non-issue.
However, the numerical evaluation in a 2D spatial domain raises the computa-
tional cost. This can be mitigated by narrow-band approaches [1] that restrict
the computation to the immediate neighbourhood of the actual contour.

In all cases, the contour evolution takes place under the influence of the image
being segmented; the image itself is not changed in this process.

Here lies the difference between active contours (snakes) and self-snakes. A
self-snakes evolution is obtained from an active contour evolution in level-set
formulation by identifying the level-set function for the contour with the image,
thereby evolving the image itself.

Active contour filtering using morphological amoebas. To design an
amoeba-based algorithm for active contours, the identification of input image
and evolving image must be removed, leading to the following procedure:

1. Compute amoeba structure elements based on the input image f .
2. Initialise the evolving image u with a level-set function for the initial contour.
3. Evolve the image u by median filtering with the amoebas from Step 1 as

structure elements.



M. Welk: Amoeba Active Contours, SSVM 2011 5

In contrast to the iterated amoeba median filtering as described in [29], amoe-
bas depend on the immutable input image and are therefore computed just once
for the entire evolution. This saves computational expense and opens the way
for further computational optimisations.

Introduction of dilation/erosion terms. Particularly if the initial contour
is far from the actual segment boundary, and if the segment boundary is of
complex topology, the geodesic active contour evolution (5) or (6) can stop in
an undesired local minimum away from the desired contour. For such cases it
is recommended in the literature [10, 15] to modify (5) by an additional force
term ±νn. This “balloon force” resembles morphological dilation or erosion and
pushes the evolution into a chosen direction, thereby preventing it from stopping
prematurely in regions with little contrast.

A similar behaviour can be achieved in the amoeba-based active contour
model. To this end, one can bias the median filter: Instead of always selecting
the element with index m/2 within the ordered sequence g0, . . . , gm of the grey-
values in the amoeba, one chooses the element with index αm for some α 6= 1/2
(the α-quantile), or the element with index m/2+ b with some fixed offset b. We
will use the latter modification in one of our experiments.

3 Space-Continuous Analysis

We turn now to analysing the amoeba active contour filter in a space-continuous
setting, and aim at establishing a relationship to a PDE formulation. Analogous
to the proceeding in [29], we approximate the input image f and the level-set
function u locally by Taylor expansions up to second order, and compute then
approximately the amoeba shape, and the median of u within that shape.

For the purposes of the present contribution, we restrict ourselves to the
Euclidean amoeba metric dϕ ≡ d2. We will not carry out an analysis in full
generality but consider the special case in which the input image and initial
contour are radially symmetric, which in particular implies that the level lines
of the level-set function u and of the input image f always coincide. This special
case is motivated by the idea that relevant parts of the segment boundary found
by an active contour evolution should be almost aligned with level lines of the
input image. Also, analysis of the biased method is beyond the scope of the
present paper.

We consider expansions of σf and u within a ̺-neighbourhood of (x0, y0) =
(0, 0). Here, (0, 0) is not the centre of radial symmetry; we assume that ∇u and
∇f do not vanish at this point. Without loss of generality, we assume u(0, 0) = 0,
f(0, 0) = 0, and assume that the gradients of u and f are in x direction. The
Taylor expansions of u and f then read

σf(x, y) = αx+ γx2 + δy2 +O(̺3) (7)

u(x, y) = µx+ νx2 + λy2 +O(̺3) . (8)
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Due to the required radial symmetry the mixed monomial xy does not occur.
By the locally invertible coordinate transform z = µx+ νx2 + λy2 we obtain

σf =
α

µ
z +

β

µ2
z2 +O(̺3) (9)

u = z +O(̺3) . (10)

Note that the curvatures of level lines of σf and u are equal, such that the
coordinate transform straightens not only the level lines of u but also those of
σf , making the y2 contribution vanish.

The contour of the amoeba A with centre p = (0, 0) and amoeba radius ̺
is made up by all those points q = (x, y) for which d2(p, q) = ̺2, i.e. x2 + y2 +
(σf(x, y))2 − ̺2 = O(̺4) or

y2
(

1− 2λ

µ2
z

)

+

(

1 + α2

µ2
z2 + 2

(

αβ

µ3
− ν

µ4

)

z3
)

− ̺2 = O(̺4) . (11)

A given level line u = z of u intersects the contour of A in two points. Their
y coordinates are solutions of (11), understood as quadratic equation for y, i.e.
y = ±Y (z) +O(̺3) with

Y (z) =

√

̺2 − 1 + α2

µ2
z2

(

1 +
λ

µ2
z − αβ/µ3 − ν/µ4

̺2 − (1 + α2)z2/µ2
z3
)

. (12)

Thus, the length of the level line segment within A is up to O(̺3) equal to 2Y (z).
It is nonnegative for z ∈ [Z−, Z+] where

Z± = ± ̺µ√
1 + α2

+O(̺2) , (13)

and goes to zero with O(
√

|z − Z±|) when approaching the boundaries.
The part of the amoeba A in which u takes values z ∈ [a, b] ⊆ [Z−, Z+]

has an area approximately given by the integral 2
∫ b

a
Y (z)τ(z) dz where τ(z) :=

∂x/∂z = 1/µ− 2νz/µ2 +O(̺2) represents the inverse density of level lines. The
median M of u within A therefore satisfies the condition

M
∫

Z
−

Y (z)τ(z) dz =

Z+
∫

M

Y (z)τ(z) dz +O(̺4) , (14)

which yields, with a loss of accuracy due to the approximation of the integration
boundaries via (13),

̺µ/
√
1+α2

∫

0

(

Y (z)τ(z)− Y (−z)τ(−z)
)

dz = 2

M
∫

0

Y (z)τ(z) dz +O(̺7/2) . (15)
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Since M = O(̺2) and Y (0) = ̺, we have
∫M

0
Y (z)τ(z) dz = ̺M/µ+O(̺4), and

by the substitution z = ̺µζ/
√
1 + α2 we obtain

M =
(λ− 2ν)̺2

1 + α2

∫ 1

0

ζ
√

1− ζ2 dζ − (αβµ + ν)̺2

(1 + α2)2

∫ 1

0

ζ3 dζ
√

1− ζ2
+O(̺5/2)

=
̺2

6

(

2λ− 4ν

1 + α2
− 4αβµ− 4ν

(1 + α2)2

)

+O(̺5/2) . (16)

Based on the expansions (9), (10) and the variable substitution for z we can
express the coefficients in terms of derivatives of u and f . We have µ = ux,
ν = 1

2
uxx, λ = 1

2
uyy, α = σfx, β = γ − αν/µ = σ

2
(fxx − fxuxx/ux). Giving up

our special choice of coordinates, we replace x and y by unit vectors η ‖ ∇f and
ξ ⊥ ∇f in gradient and level line direction, respectively. Thus the last equation
expresses that, in the radially symmetric case, one step of the amoeba active
contour filter asymptotically approximates for ̺ → 0 one time step of size ̺2/6
of an explicit scheme for the PDE

ut =
uξξ

1 + σ2|∇f |2 − 2σ2fηfηηuη

(1 + σ2|∇f |2)2 = g(|∇f |)uξξ + 〈∇g(|∇f |),∇u〉 , (17)

i.e. (6) with the Perona-Malik-type edge stopping function (compare [9, 15])

g(s) := (1 + σ2s2)−1 . (18)

It is still an open question whether this approximation property holds in
exactly the same form for situations other than the radially symmetric case
discussed here. Nevertheless, even this partial equivalence result links amoeba
active contours to the framework of PDE active contour methods and makes it an
interesting candidate for a non-standard discrete realisation of active contours.

4 Experiments

Our first experiment (Figure 1) demonstrates the viability of the amoeba active
contour approach and its similarity to geodesic active contours. Starting from an
initial contour that generously surrounds almost the entire image area of the test
image, Figure 1(a), our amoeba active contour algorithm adapts to the outline
of the depicted human head section within 600 iterations with amoeba radius 10,
see Figure 1(b, c). By our approximation result (16) the corresponding evolution
time for an active contour PDE is T = 10000.

Indeed, computation of geodesic active contours (6) up to T = 10000 by
an explicit finite difference scheme gives a similar result, see Figure 1(d). Slight
differences, in particular a stronger rounding of contours, can be attributed to
the blurring effect of the central difference approximation of derivatives.

The theoretical link between amoeba active contours and geodesic active
contours established in Section 3 is rooted in a space-continuous setting. In fact,
the application of both filters to digital images reveals some differences in detail
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a b

c d

Fig. 1. (a) MR image of a human head with initial contour. (b) Amoeba active con-
tours (unbiased), amoeba radius ̺ = 10, σ = 0.1, 200 iterations. (c) Amoeba active
contours, same parameters but 600 iterations. (d) Geodesic active contours (6) with
edge-stopping function (18), σ = 0.1, computed by an explicit time-stepping scheme
with time step size τ = 0.25, 40000 iterations.

which can be attributed to their fundamentally different discrete realisation. The
already mentioned numerical dissipation of finite difference discretisations stands
in contrast to the very fine adaptivity of amoeba shapes to image structures,
which is also reflected in the resulting active contours.

Furthermore, while the disposition to “lock in”, i.e. become stationary at
image structures with strong gradients, is a feature of both active contour ap-
proaches, such a behaviour is more pronounced in the case of amoeba active
contours. The reason is that the underlying median filter already in its non-
adaptive formulation possesses non-constant steady states, so called root signals
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a b c d

e f g

Fig. 2. (a) MR image with initial contour (detail). (b) Amoeba active contours (unbi-
ased), amoeba radius ̺ = 10, σ = 0.1, 20 iterations. (c) Same but ̺ = 12, σ = 0.1, 10
iterations. (d) Same but ̺ = 12, σ = 0.1, 60 iterations. (e) Geodesic active contours
(6), σ = 0.1, τ = 0.25, 960 iterations. (f) Same but 3000 iterations. (g) Same but
57600 iterations.

[12]. It is therefore natural also for an amoeba median filter to develop root
signals, the more if the amoeba shapes themselves are kept fixed as in our case.
This property contributes on one hand to stabilising the segmentation result. On
the other hand it means that some minimal amoeba size is needed for reasonable
segmentation. Experiments suggest that ̺ should not be smaller than 10.

As speed optimisation has not been in the focus of our work so far, a proper
comparison of the two active contour algorithms in terms of runtimes cannot be
made at this point. To this end, additional optimisation effort for both algorithms
would be required. To state a rough trend we mention that in our present, non-
optimised implementations both algorithms are roughly comparable in speed, the
amoeba-based algorithm being about 15% faster than the PDE scheme in the
case of Figure 1(c) vs. (d) (but sometimes also a bit slower in other examples).

In our second experiment (Figure 2) we use the same test image as before
but aim at segmenting the cerebellum. As our initial contour, Figure 2(a), is not
very precise, the amoeba active contour with amoeba radius ̺ = 10, the amoeba
active contour locks in at some sharp contours outside the desired region (b).
With a slightly enlarged amoeba radius ̺ = 12 a fairly good segmentation is
reached (c). Further evolution of the amoeba contours becomes stationary at a
contour that cuts off some small details (d). Running geodesic active contours
up to evolution time T = 240 (which matches the amoeba evolution of the third
frame above) still does not segment the cerebellum well (e); this is achieved only
after considerably longer evolution time (f). Continuing geodesic active contour
evolution, again a stationary contour is reached, see Figure 2(g).
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a b

c d

Fig. 3. (a) MR image with initial contour (detail). (b) Amoeba active contours with
dilation bias, amoeba radius ̺ = 20, σ = 2.0, bias b = 10, 5 iterations. The bias
b = 10 means that within each amoeba the 10-th greyvalue above the median index
was chosen. (c) Same but 15 iterations. (d) Same but 30 iterations.

In our third experiment (Figure 3) we demonstrate the modification of amoeba
active contours by a dilation bias b = 10 in order to force an expansive evolu-
tion of the contour. Thus, within each increasing sequence of grey-values of an
amoeba the value 10 positions after the median was selected (the maximum if
the amoeba contained less than 20 pixels). Together with amoeba radius ̺ = 20
and a comparatively large contrast parameter σ = 2.0 this allowed to segment
the corpus callosum from a small initial contour within the structure.

5 Conclusion

In this paper we have developed a new variant of an active contour algorithm for
image segmentation based on iterated amoeba median filtering of a level-set func-
tion. We proved that in a radially symmetric setting the continuous-scale limit
of our amoeba active contour method coincides with the well-known geodesic
active contour equation. Experiments verify that both algorithms behave struc-
turally similar. Due to their entirely different discrete filter strategies, they differ
in the representation of contour details.

Ongoing work is directed at extending our theoretical analysis. This will
include the study of non-radially symmetric situations as well as different amoeba
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metrics and the relation between the biased approach and additional force terms.
A further goal are algorithmic optimisations.

The revenue of this effort will be, firstly, a deeper theoretical insight into the
relations between discrete and continuous image filters will be gained. Secondly,
based on the so established approximation properties genuinely discrete filters
can be used as unconventional discretisations of PDE filters and improve the
practical implementation of the latter.

Acknowledgements. The author thanks Michael Breuß for helpful discussions
on the topic. Implementation is partially based on earlier work by Oliver Vogel.
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