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Abstract. This paper is concerned with the theoretical analysis afctire-
adaptive median filter algorithms that approximate cumeahased PDEs for im-
age filtering and segmentation. These so-called morphzabgmoeba filters, in-
troduced by Lerallut et al. and further developped by Welalgtachieve similar
results as the well-known geodesic active contour andsselkes PDEs. In the
present work, the PDE approximated by amoeba active cantsuterived in the
general case. This PDE is structurally similar but not idehtto the geodesic
active contour equation. Implications for the qualitatbehaviour of amoeba ac-
tive contours as well as for the approximation of the pre-atimed self-snakes
equation are investigated.

1 Introduction

Introduced by Lerallut et al. [11, 12], morphological amaétitering is a class of dis-
crete image filtering procedures based on image-adaptivetgting elements. These
structuring elements are defined by a so-called amoebamik#i combines spatial
proximity and grey-value similarity. Amoeba filters adajeixfbly to image structures.
For example, iteratedmoeba median filterinAMF) improves the favourable edge-
preserving denoising capabilities of traditional itedateedian filtering [17] by remov-
ing its tendency to dislocate edges, and introducing evge-@thhancing behaviour.

Extending the author’s earlier work with co-authors [19g, 18iis paper is con-
cerned with comparing AMF methods to two curvature-baseH$af image process-
ing. Firstly, we considegeodesic active contoufs, 4, 8, 9]

. Vu
w = vl div (V1) ) @
which can be used to segment a given imgdpy evolving a contour towards regions of
high contrast inf. The evolving contour is encoded as zero-level set of thetionw.
The (decreasing, nonnegative) edge-stopping fungtizem be chosen e.g. as a Perona-
Malik-type function [15]
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Secondly, we are interestedself-snake§l6], a PDE filter for a single image that is

obtained from (1) by identifying with the evolving function..
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As shown in [19], AMF is linked to the self-snakes equationairway similar
to the connection of traditional median filtering to (meanjvature motion [1] that
was proven by Guichard and Morel [6]: One amoeba medianifijestep asymptot-
ically approximates a time step of sizé/6 of an explicit time discretisation for the
self-snakes PDE when the radip®f the structuring element goes to zero. The exact
shape of the (decreasing, nonnegative) edge-stoppingdargcdepends on the specific
choice of the amoeba metric, with the Perona-Malik-typefiom (2) being associated
to the L2 amoeba metric.

Building on this amoeba/self-snakes connection, [18] psapl a morphological
amoeba algorithm for active contour segmentation. Expamtaily, this process be-
haves similar to geodesic active contours, with a tendemsfined adaptation to struc-
ture details, see [18, Fig. 2]. Analysis in [18] was resgritto a rotationally symmetric
situation where asymptotic equivalence to geodesic actiméours (1) could be proven.
The present paper aims at closing this gap in theoreticdysisa

Writing the self-snakes equation ((1) withe u) asu; = g-|Vu| div(Vu/|Vu|)+
(Vg, Vu) accentuates an important difference between the (meawdtcue motion
equationu; = |Vu| div(Vu/|Vu|) and self-snakes: the edge-enhancing component
(Vg,Vu) is related to a shock filter [14,16] or backward diffusion J[lLAnalyti-
cally, this makes the self-snakes PDE ill-posed, and iniqdar induces staircasing
behaviour [20]. Numerically, this shock component needscijec consideration. In
finite-difference discretisations, it is usually treatgdam upwind discretisation [13].
Still, severe numerical dissipation artifacts appear. 28] demonstrates, results de-
pend heavily on the grid mesh size, rendering the approiomat the PDE unreliable.

One approach to defeat these undesired phenomena on theeR&Htdelf, and
to construct a PDE that can properly be numerically appratéah, is pre-smoothing
[5]. To this end, one replace¥w« in the argument ofy by a smoothed version like
Vu, := K, x VuwhereK, denotes a Gaussian of standard deviation

As [19] suggests, AMF can be considered as an unconventilistaktisation of
self-snakes. Experiments in [19] indicate that it is lesceptible to the above-mentio-
ned sort of artifacts. This indicates that the AMF procedais® acts in some way
regularising. To make a first step towards a better undetstgrof the regularisation
effects of pre-smoothing and amoeba filtering is anothezaibje of this work.

Our contribution. We extend the analytical investigation of amoeba filtersstFive
derive the PDE corresponding to the amoeba active contotlradén the general case,
which is no longer fully identical to the geodesic active twam equation. To this end,
we introduce a proof strategy substantially different fribvat used in [18, 19]. Quali-
tative differences between geodesic and amoeba activewrsrdre discussed based on
the approximation result.

Finally, we apply our extended analysis of amoeba activéatos to amoeba ap-
proximation of pre-smoothed self-snakes.

Structure of the paper. We give a short account of the basic concepts of amoeba
filtering in Section 2. Our main theoretical result on PDE @mation is proven in
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Section 3. It is used for comparing amoeba active contougetalesic active contours
in Section 4. Pre-smoothing in the self-snakes PDE and fissgmation in the amoeba
framework is discussed in Section 5, followed by a conclugicSection 6.

2 Amoeba Filters

In this section we recall shortly the definition of amoebanstand amoeba filters. We
assume that a 2D image is given as a smooth fungtiof? — IR where2 ¢ IR? is
closed.

Amoeba metrics. Following the spatially continuous formulation of the arbadérame-
work in [18,19], we associate witli the image manifold” ¢ IR?® consisting of the
points(z,y, 8f(z,y)). As a Riemannian metric ofl, anamoeba metrids given by

dys = v (VA2 T2, 8 df) 3)

wherev is some norm ofR%. The use of the Euclidean norgida2 + dy? in the spatial
component ensures rotational invariance of the amoebaaywetrile the combination
of spatial and tonal distances is governedbyhe factors is a scale that balances the
spatial and tonal information.

Theamoeba distancé(p, g) between two pointp, g of the image domain is the
minimum of L(c) = [ d, s among all curveg connectingp with q.

Continuous-scale amoeba filtering formulation. For amoeba filters, one defines a
structuring elementl,, for each poinp € 2 as the set of aly € 2 such thati(p, q) <

0, where the global parametgiis theamoeba radiusWith the so defined structuring
elements several morphological filters can be carried oaig$ttforward. In particular,
for amoeba median filtering (AMF), the median of the greyueal of the given image
f within A, becomes the filtered grey-valuegtl ike traditional median filtering, this
filter can be applied iteratively. This process was studigd 9].

Amoeba active contours. The amoeba active contour method described in [18] acts
in a similar way: Structuring elements are determined asrbdjut on the basis of the
given imagef, and are used for median-filtering the evolving level-satfion.

Discrete amoeba filtering algorithms. Practically, computations are done on discrete
images, using a discrete version of the above-mentione@badistance obtained by
restricting curves to paths in the neighbourhood graph efitage grid, either with
4-neighbourhoods as in [11, 12] or with 8-neighbourhoods §8, 19]. More sophis-
ticated constructions using geometric distance trans¢2yi’] would be possible.

Choice of the amoeba metric for the analysisIn the following, we use thé&? amoeba
metric given byv(s,t) = v/s2 + t2. The amoeba metric paramefgican be fixed to
1 since a change of this parameter is equivalent to a simptalirg of the steering
function f.
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3 Analysis of Amoeba Active Contours

We study an amoeba median filter fer— 0, in which f is a smooth function from
which the amoeba structuring elements are generatedy amdnother smooth func-
tion, to which the median filter is applied. In our analysdl orthonormal bases
aligned to the gradient and level-line directions of bothdtiions will play an impor-
tant role. Given a locatior in the image domain, we will therefore denote Ry=
(cos ¢, sin )T the normalised gradient vector phtx,. The unitvectoC L x thenin-
dicates the local level line direction ¢f Analogously, we denote hya normalised gra-
dient vector fori, and by¢ | n the unit vector in the level line direction. The angle be-
tween the gradient directions will be calladsuch tha) = (cos(¢+a), sin(<p+a))T.
We will prove the following fact.

Theorem 1. One step of amoeba median filtering of a smooth funaiigoverned by
amoebas generated frofnwith an amoeba radius of asymptotically approximates a
time step of size = ¢*/6 of an explicit time discretisation for the PDE

_ uge VAV fec cos’a
1+ |Vf2sin®a  1+|Vf[2Zsin®a \ 1+ |Vf]?
fxx cosa (2 +sin®a+ 3|V f|? sin® ) @)
(1+ (V1) |

Ut

+2 fex sin® o +

Remark on the proof strategy. The proofs in [18, 19] were based on measuring level
line segments within the amoeba. Throughout the proofdpTapefficients off and

u up to second order were used in the calculations. This girateuld be followed in
the more specialised cases treated in those papers. Howlsaromplexity of such
calculations would increase a lot in the general case we lamatdo discuss. In the
following proof of the theorem we follow therefore a diffetestrategy that measures
areas not segments but sectors of amoebas via a polar caterdapresentation. Level
lines other than the one through the amoeba centre are nsitleved directly any more.

Finding the amoeba contour. To determine the shape of the amoegba= A, around
a pointxy € {2, we start by considering the 1D case: givén IR — IR, we seek
z+ € IR such that the arc-length of the image graphfdbetweenz, and each of
xo + 2z+, xo — z— equalse. Certainly,z1 < p.
Using Taylor expansions fof and the square root function, we have for the arc-
length fromz to xg + 2z (wherez > 0)
v 2 @) @) | s
1+ f(2)2de =21+ f(29)2+ —— —=—=——""o+0 . (5
F'@) Pl + 5 e 1O 6

Zo

Equating this to yields a quadratic equation mnwith the solutions

R & YA F'(@o) (o) 3
N f“®V@®<li¢ku+f@m”>+O@) ©
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Fig. 1. Left to right: (a) Area differenced; in an asymmetric amoeba with straight level lines.
— (b) Area differenceq, in a symmetric amoeba with curved level linegc}Compensation of
the area difference\ by shifting the central level line (schematic).

which givesz, as the %" case (because of > 0). Using again the Taylor expansion
of the square root function, and doing an analogous deonddir z_, we arrive at

2 r/ "
2e = 0 - o° f'(wo) f (51702) + 0(93) ) (7)
V1+ f'(z0)? 2(1+f’(:ro)2)

Turning to the 2D case, we approximate each shortest patteiarhoeba metric from
x( to a point on the amoeba contour by a Euclidean straightrities image plane. This
introduces only ar©(o3) error for the path length. We consider now the straight line
throughz, in the direction of a given unit vectar € IR?. By our previous 1D result,
with the directional derivativeg, (xo) = (v, V f(x0)) and fy, (zo) = v D2 f(x0) v,
we see that said straight line intersects the amoeba coateyr+ 2. (v) - v with

v) = 4 0* (v, V f(x0)) v" D*f (o)
i+ (i@ 2 (14 (0, V(o))

za( +0(0*) . (8)

Contributions to the amoeba median. The median of, within the structuring element
A equalsu(xy) if (a) the amoeba is point-symmetric w.rty, and (b) the level lines
of u are straight: The central level lin€x) = u(x() of u then bisects4, i.e. A, =
{x e Alu(x) > u(zo)} andA_ := {x € A|u(z) < u(xo)} have equal area. For a
similar bisection approach in a gradient descent for seggtien compare [10].
Deviations from conditions (a) and (b) lead to imbalanceéwbenA, andA_. The
median is determined by the shift of the central level lire th necessary to compensate
for the resulting area difference. The separate area sfféetsymmetry of the amoeba,
and curvature ofi's level lines are of orde®(¢*), while any cross-effects are at least
of orderO(p*), and can be neglected for the purpose of our analysis. Tdrese¢he two
effects can be studied independently.

Asymmetry of the amoeb#Ve start by analysing the effect of asymmetries of the point
set.A, compare Figure 1(a). As the amoeba shape is governgdeg will use theg,
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x local coordinates. For an arbitrary unit vector= (cos(p + ), sin(p + 19))T we
have then

fo(xo) = |V f(xo)|cos? , (9)
v D2 f(z) v = fee sin? 9 + 2 fexcosd sin®d + fyy cos® ¥ (20)

which can be inserted into (8) to obtain (¢ + ) := 24 (v).
Assume now that, has straight level lines; remember that- « is the direction

angle of its gradient direction. Since the amoeba shapeéndiyz. (v) in polar coor-
dinates, the sought area difference is then obtained as

pta+m/2 9 )
Ay = Ay = A= / (24(9) — 2—(0)) %

ota—m/2

dd + O(e?) .

(11)
The integral on the right-hand side equals

a+m/2
3| / fee €089 sin? 9 4 2 fey cos? ¥ sindd + fyy cos®
-0

(1+|V f]?cos? 19)5/2

dv (12)
a—7/2
which evaluates to

fee cos® a 2 fex sin® a

3
-z 0|V +
3 <(1 +IVR)(1+ VP sin?a)”? 14|V f2 sina)*?
N frxx cosa (2 +sin*a+ 3|V f|? sinza)>
(1+|Vf2)(1+ [V f]2 sin? a)*/?

(13)

Curvature of the level linesThe second source of area imbalance betwdenand
A_ is the curvature of the level line af throughx(. Using theg, n local coordinates
pertaining tou, this curvature equalg: /(2| Vu|). The resulting area difference is

z4 (pta+m/2)

U
Ay = Ay — |A_| = -2 / —2|§U|z2 dz + O(o")
—z-(ptatm/2)
_ 2 uge 0’ Ot 14
; +0(@)- (14)

3|V (14 |V f|? sin® a)3/

Median calculation. As the median: of « within A belongs to the level line af that
bisects the area of the amoeba, the differemeeu(x,) corresponds to a shift of the
central level line that compensates the area differefice- A,. This compensation is
obtained when

p— u(xo)

2
[Vl

(4ot at7/2) + 2 (p+a+7/2)) = A+ Ay + O(o") , (15)
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which finally givesu = u(xo) + (02/6) - us With u; given by (4) up to an erro®(o).
This concludes the proof of Theorem 1.

Special cases.The following two statements reproduce the more specthbggproxi-
mation results from [19] (in the case of tiié amoeba metric) and [18], respectively.

Corollary 1. The amoeba median filter with = «/\ approximates the self-snakes
equation

gy — e 2uny [Vul?
1+ |Vul2/X2 2 (1+|Vu|2/)\2)2
1 Vu
= |Vu|di 16
[Vl div (1+ [Vu2/X2 |Vu|) (16)

in the sense of Theorem 1.

Corollary 2. Ifinputimagef and evolving level-set imageare rotationally symmetric
with respect to the origin, amoeba median filtering apprates the geodesic active
contour equation

Uge 2 fon | Vul [V f] . ( 1 Vu )
U = — = |Vu|div | — == =— 17
IRV ey VA e ) @0

in the sense of Theorem 1.

In the case of Corollary 1, one observes that its hypothesisle that the identities
a = 0,¢ = & andx = n hold everywhere. For Corollary 2, the assumed rotational
symmetry yieldso = 0, ¢ = &, x = 10, ugn = fen = 0, anduge/uy = fee/fn-
Substituting the respective sets of identities into (4)liegpthe corollaries.

4 Comparison to Geodesic Active Contours

In the general amoeba active contour setting, however,avident that equation (4)
does not exactly coincide with (1). For a better understamdf the differences between
both active contour methods, we consider further typicafigorations.

Homogeneous image gradients.n flat image regionsVVf = 0), geodesic active
contours (1) as well as amoeba active contours evolve the $e¢ functionu by cur-
vature motion. Let us consider now an image region with a hggneous non-zero
gradient,V f = const. In such a region, geodesic active contours still performau
ture motion, but with an evolution speed slowed down by therest-dependent factor
g(IVf?) = 1/(1 + |V £]?). The amoeba-based PDE (4) in this case becomes
Ugg

e 1+|Vf]2sin?a’ (18)
i.e. also a slowed-down curvature motion, but the evoluisoslowed down the less,
the more the level lines of andw are aligned. This leads to a faster straightening of
aligned contour segments, thereby boosting adaptatiarsdével lines to those of,
see the schematic representation in Figure 2(a).
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Fig. 2. Evolution of level lines under the PDE (4) in exemplary coufgions (schematic). Solid
lines: level lines ofu, dashed lines: level lines df. Left to right: (a) In a region with homoge-
neousV f, aligned level line segments afevolve faster. {b) At a location with alignedVu

and V f, the contour evolves inward faster when the curvature ekceeds that of. — (c) At
locations with orthogonaW« andV f, the curvature-dependent movement of the contour is at-
tracted towards high-contrast regionsfofAssuming that) points to the rightfe,, < 0 holds in

the left, andfe,, > 0 in the right part, whileuge < 0 in both cases.

Aligned gradients. Relaxing the condition of Corollary 2, we assume now that the
gradient directions of andu coincide,« = 0, ¢ = &, x = m, but make no assumption
on their curvatures. At such a location, (4) takes the form

P
we = uee = [V f1 1Vl (1 A |@’}|2)2>
o uee 2|V £Vl fan 2|Vf|2|VU|<Uss &)

CLHIVIE g wrp)? LHIVEP

2uy 2 fy (19)
which coincides with the corresponding geodesic activeaanevolution except for
the last summand that speeds up the evolution if the leveldinvaturergs /(2 u.,) of

u exceeds that of, see Figure 2(b). The same offset is obtained in the argiat
caseqa = m, ¢ = —&, x = —n,; note that the curvature ¢fs level lines is measured
with respect to the orientation afs level lines. Relative to geodesic active contours,
this implies an accelerated removal of sharp contour certhet do not match the given
imagef.

Orthogonal gradients. Consider now the complementary situation where the gradien

directions ofu and f are orthogonal, i.ex = 7/2, { = n, x = —&. Then (4) becomes

_ o uge 2|V IVl fen
1+ |V f]? 1+ |V f]?

(20)

Ut

where the last summand is by a fac(dr+ |Vf|2) larger than in the corresponding
geodesic active contour evolution. This means that aitracf the contour in: towards
high-contrast regions iifi is strengthened, see Figure 2(c).

In summary, our findings indicate that compared to geodesiesacontours (1) the
amoeba active contour equation (4) tends to attract theoontfaster to high-contrast
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image regions and to strengthen the alignment of level lafesto those off. These
effects are in line with the somewhat finer adaptation of amac&ctive contours to
structure details that was observed in [18].

5 Pre-smoothing and Amoeba Filters

The approximation result of [19], compare Corollary 1, refto the self-snakes PDE
(1) with f = u/A. As pointed out in the introduction, a disadvantage of tiXERs its
ill-posedness that is often countered by pre-smoothiag, i.

. Vu
uy = |Vu| div <g(|Vu0|2) W) (22)

with u, = K, * u.

This procedure can be translated in a straightforward wayutoamoeba median
filter setting. One only needs to carve the amoeba strugtw@iements based on the
pre-smoothed image, instead ofu. The resulting filtering step is described by our
amoeba active contour model with= u, /), such that the approximation result from
Theorem 1 applies. Analogous to our discussion in the amaetdze contour setting
this means that in the limig — 0 not exactly (21) is approximated but a self-snakes
equation with a modified pre-smoothing.

However, in practical computation of amoeba filters one ghvases a positive
amoeba radiug. This means that such a filtering procedure with amoebageatefiom
f = us /X would contain two spatial scale parameterand, both of which act as
some sort of spatial averaging.

It can therefore be conjectured that the amoeba radiu$ dtsts similarly as a pre-
smoothing step. While a more exhausting investigation isfigsue has to be left for
future work, we compare pre-smoothed self-snakes ith) = 1/(1 + s?) to amoeba
median filtering { = w«) with positive amoeba radius for a very simple example.

Test case.We consider the function : IR* — IR given by
u(z,y) = = + € cos(kx) , exl1. (22)

It is composed of a simple linear slope (which would be stetig under each of the
filters) and single-frequency perturbations of small atngi. We will analyse the re-
sponse of filters to that perturbation, dependent on theifnecy parametek.

Given the nonlinearity of the filters in question, there issuperposition property
for these perturbations. Nevertheless, sufficiently spetturbations will interact with
each other only in higher order teri@=2), such that the technique will still give some
intuition of the behaviour of the filters.

The chosen setting is representative of the practicallyningéul situation of stair-
casing arising in a smooth transition.
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Self-snakes.In our test case all level lines are parallel, so the 2D swdikes equation
simplifies tou; = g |Vu| div(Vu/|Vul) + (Vg, Vu). The first summand vanishes,
while the second one simplifies tgu.. From (22) we obtain, = 1 — ¢ k sin(kz),
and withg as given by (2) furthey,, = 1 ¢ k* cos(kz) + O(¢?). Thus, we have

e k? 5
Ut = Golle = —5= cos(kx) + O(e7) (23)

indicating an indefinite amplification of higher frequersiat the same time, the higher-
order terms resulting from nonlinearity lead to an instaatais propagation of the per-
turbation from a given frequendyto higher frequencies, which means that even for a
single-frequency perturbation arbitrarily high frequigisonith arbitrarily high amplifi-
cation ratios will appear within short evolution time, ehiad a loss of regularity of the
evolving function.

Pre-smoothing.Replacingg = ¢(|Vu|?) with g, = g(|Vu,|?), we have in our test
caseu, = x + e ¥ /2 cos(kx), thusd, g, = # e+ /2 cos(kx) + O(2) and
finally

2
Up = OpGo - Oz = % e~k 0?/2 cos(kzx) + (9(52) . (24)

Unlike before, the amplification ratie? exp(—k202/2) is bounded and reaches a max-
imum fork = v/2/0, such that regularity of the evolving function is kept.

Amoeba filter with finite-size radius. We calculate the effect of amoeba median filter-
ing with amoeba radiug on our test case in the same way as in the proof of Theorem 1
via the area differencel := |.4;| — | 4z|. As in our test settings level lines are not
curved, only the asymmetry contributialy needs to be considered.

The amoeba aroundy = (x0,yo) is symmetric with respect to the line = yq
(parallel to ther-axis). We parametrise this symmetry line(ass), yo), wheres is an
arc-length parameter in the amoeba metric, i.e.

z(s)

/ V14 ui(z,y0)dz =s. (25)
0

From the level line througliz(s), yo) (parallel to they-axis), the amoeba cuts out a
piece of lengtl2/ 02 — s2. The sought area difference is therefore

A(mo)j 2./0% — 52 . 0 2./0% — 52 N
J /T4 uZ((s), o) g 14 u2(x(s),y0)

:2/m< - 1 )ds (26)
0

\/1 + u2(x(s),y0) - \/1 + u2(x(—$),y0)
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factors depending on the frequency

o | parameterk for pre-smoothed self-
snakes and amoeba median filtering
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axis showsk, vertical axis shows
% B 0 15 % P s amplification factors.

with ug(x,y) = 1 — ke sin(k x).

Analogously to (15), the resulting mediariéxo) + A(xo)/(4 0). Numerical in-
tegration of (26) confirms thad(x, y) itself is approximately a multiple of the pertur-
bation functiore cos(k x). For easy comparison with (24), we divide the amplification
factor A(z,vo)/(4 o cos(k x)) by 0?/6 (the evolution time corresponding to amoeba
radiusy in the asymptotic approximation results).

Figure 3 shows the numerically computed factdfx, y0)/(4 ¢ cos(k z)) - 6/0°
along with the factok? exp(—k20?/2)/2 from (24) as functions of the frequency pa-
rameterk. Here,p ando were chosen for an optimal fit of the first maximum. It is
evident that the first lobe of the amplification functions é&wsimilar. For higher fre-
guencies the exponential dampening of the pre-smoothédrsgies is superior to the
oscillations of the amoeba amplification factor around atpesvalue. However, when
practically filtering images, higher frequencies are cfibgfspatial discretisation any-
way. If the amoeba radius is not larger than appi®{r = 3, the higher lobes of the
amplification function in Figure 3 will disappear entirely.

6 Conclusion

We have analysed our amoeba active contour method propogééliand derived a
partial differential equation that it approximates asyatigglly for vanishing structur-
ing element size. Our result reproduces as special casesdtlier results from lit-
erature: the approximation of geodesic active contoursspexial case [18] and the
approximation of self-snakes by iterated amoeba mediaarifily [19]. In the general
case, the PDE derived here differs from the geodesic actimtoar equation. The im-
plications of the differences for active contour segméarelhave been discussed and
found to be consistent with the experimental findings of [18]

Finally, we have discussed from the same view point the agmation of self-
snakes with pre-smoothing by amoeba filters. As a first steprids a more comprehen-
sive investigation of the relation between curvature-dd3BEs with pre-smoothing,
and amoeba filtering with non-vanishing structuring elethewe have compared the
effect of both methods in a simple special case with singdgifency perturbations of
a constant gradient image. Future work extending this aisly expected to lead to a
deeper understanding of the interplay between adaptivpimatogy and PDE methods.
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