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Abstract. This paper is concerned with the theoretical analysis of structure-
adaptive median filter algorithms that approximate curvature-based PDEs for im-
age filtering and segmentation. These so-called morphological amoeba filters, in-
troduced by Lerallut et al. and further developped by Welk etal., achieve similar
results as the well-known geodesic active contour and self-snakes PDEs. In the
present work, the PDE approximated by amoeba active contours is derived in the
general case. This PDE is structurally similar but not identical to the geodesic
active contour equation. Implications for the qualitativebehaviour of amoeba ac-
tive contours as well as for the approximation of the pre-smoothed self-snakes
equation are investigated.

1 Introduction

In A. Kuijper, T. Pock, K. Bredies, H. Bischof, eds., Scale Space and Variational Methods in Com-
puter Vision, Lecture Notes in Computer Science, vol. 7893,pp. 392–403,
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Introduced by Lerallut et al. [11, 12], morphological amoeba filtering is a class of dis-
crete image filtering procedures based on image-adaptive structuring elements. These
structuring elements are defined by a so-called amoeba metric that combines spatial
proximity and grey-value similarity. Amoeba filters adapt flexibly to image structures.
For example, iteratedamoeba median filtering(AMF) improves the favourable edge-
preserving denoising capabilities of traditional iterated median filtering [17] by remov-
ing its tendency to dislocate edges, and introducing even edge-enhancing behaviour.

Extending the author’s earlier work with co-authors [18, 19], this paper is con-
cerned with comparing AMF methods to two curvature-based PDEs of image process-
ing. Firstly, we considergeodesic active contours[3, 4, 8, 9]

ut = |∇u| div
(

g(|∇f |2) ∇u

|∇u|

)

(1)

which can be used to segment a given imagef by evolving a contour towards regions of
high contrast inf . The evolving contour is encoded as zero-level set of the functionu.
The (decreasing, nonnegative) edge-stopping functiong can be chosen e.g. as a Perona-
Malik-type function [15]

g(s2) =
1

1 + s2/λ2
, λ > 0 . (2)

Secondly, we are interested inself-snakes[16], a PDE filter for a single imageu that is
obtained from (1) by identifyingf with the evolving functionu.
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As shown in [19], AMF is linked to the self-snakes equation ina way similar
to the connection of traditional median filtering to (mean) curvature motion [1] that
was proven by Guichard and Morel [6]: One amoeba median filtering step asymptot-
ically approximates a time step of size̺2/6 of an explicit time discretisation for the
self-snakes PDE when the radius̺ of the structuring element goes to zero. The exact
shape of the (decreasing, nonnegative) edge-stopping functiong depends on the specific
choice of the amoeba metric, with the Perona-Malik-type function (2) being associated
to theL2 amoeba metric.

Building on this amoeba/self-snakes connection, [18] proposed a morphological
amoeba algorithm for active contour segmentation. Experimentally, this process be-
haves similar to geodesic active contours, with a tendency to refined adaptation to struc-
ture details, see [18, Fig. 2]. Analysis in [18] was restricted to a rotationally symmetric
situation where asymptotic equivalence to geodesic activecontours (1) could be proven.
The present paper aims at closing this gap in theoretical analysis.

Writing the self-snakes equation ((1) withf ≡ u) asut = g·|∇u| div(∇u/|∇u|)+
〈∇g,∇u〉 accentuates an important difference between the (mean) curvature motion
equationut = |∇u| div(∇u/|∇u|) and self-snakes: the edge-enhancing component
〈∇g,∇u〉 is related to a shock filter [14, 16] or backward diffusion [16]. Analyti-
cally, this makes the self-snakes PDE ill-posed, and in particular induces staircasing
behaviour [20]. Numerically, this shock component needs specific consideration. In
finite-difference discretisations, it is usually treated by an upwind discretisation [13].
Still, severe numerical dissipation artifacts appear. As [19] demonstrates, results de-
pend heavily on the grid mesh size, rendering the approximation of the PDE unreliable.

One approach to defeat these undesired phenomena on the PDE level itself, and
to construct a PDE that can properly be numerically approximated, is pre-smoothing
[5]. To this end, one replaces∇u in the argument ofg by a smoothed version like
∇uσ := Kσ ∗∇u whereKσ denotes a Gaussian of standard deviationσ.

As [19] suggests, AMF can be considered as an unconventionaldiscretisation of
self-snakes. Experiments in [19] indicate that it is less susceptible to the above-mentio-
ned sort of artifacts. This indicates that the AMF procedurealso acts in some way
regularising. To make a first step towards a better understanding of the regularisation
effects of pre-smoothing and amoeba filtering is another objective of this work.

Our contribution. We extend the analytical investigation of amoeba filters. First, we
derive the PDE corresponding to the amoeba active contour method in the general case,
which is no longer fully identical to the geodesic active contour equation. To this end,
we introduce a proof strategy substantially different fromthat used in [18, 19]. Quali-
tative differences between geodesic and amoeba active contours are discussed based on
the approximation result.

Finally, we apply our extended analysis of amoeba active contours to amoeba ap-
proximation of pre-smoothed self-snakes.

Structure of the paper. We give a short account of the basic concepts of amoeba
filtering in Section 2. Our main theoretical result on PDE approximation is proven in
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Section 3. It is used for comparing amoeba active contours togeodesic active contours
in Section 4. Pre-smoothing in the self-snakes PDE and its approximation in the amoeba
framework is discussed in Section 5, followed by a conclusion in Section 6.

2 Amoeba Filters

In this section we recall shortly the definition of amoeba metrics and amoeba filters. We
assume that a 2D image is given as a smooth functionf : Ω → IR whereΩ ⊂ IR2 is
closed.

Amoeba metrics. Following the spatially continuous formulation of the amoeba frame-
work in [18, 19], we associate withf the image manifoldΓ ⊂ IR3 consisting of the
points(x, y, βf(x, y)). As a Riemannian metric onΓ , anamoeba metricis given by

dνs = ν
(

√

dx2 + dy2, β df
)

, (3)

whereν is some norm onIR2. The use of the Euclidean norm
√

dx2 + dy2 in the spatial
component ensures rotational invariance of the amoeba metric, while the combination
of spatial and tonal distances is governed byν. The factorβ is a scale that balances the
spatial and tonal information.

Theamoeba distanced(p, q) between two pointsp, q of the image domain is the
minimum ofL(c) =

∫

c
dνs among all curvesc connectingp with q.

Continuous-scale amoeba filtering formulation. For amoeba filters, one defines a
structuring elementAp for each pointp ∈ Ω as the set of allq ∈ Ω such thatd(p, q) ≤
̺, where the global parameter̺ is theamoeba radius. With the so defined structuring
elements several morphological filters can be carried out straightforward. In particular,
for amoeba median filtering (AMF), the median of the grey-values of the given image
f within Ap becomes the filtered grey-value atp. Like traditional median filtering, this
filter can be applied iteratively. This process was studied in [19].

Amoeba active contours. The amoeba active contour method described in [18] acts
in a similar way: Structuring elements are determined as before but on the basis of the
given imagef , and are used for median-filtering the evolving level-set functionu.

Discrete amoeba filtering algorithms. Practically, computations are done on discrete
images, using a discrete version of the above-mentioned amoeba distance obtained by
restricting curves to paths in the neighbourhood graph of the image grid, either with
4-neighbourhoods as in [11, 12] or with 8-neighbourhoods asin [18, 19]. More sophis-
ticated constructions using geometric distance transforms [2, 7] would be possible.

Choice of the amoeba metric for the analysis.In the following, we use theL2 amoeba
metric given byν(s, t) =

√
s2 + t2. The amoeba metric parameterβ can be fixed to

1 since a change of this parameter is equivalent to a simple rescaling of the steering
functionf .
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3 Analysis of Amoeba Active Contours

We study an amoeba median filter for̺ → 0, in which f is a smooth function from
which the amoeba structuring elements are generated, andu is another smooth func-
tion, to which the median filter is applied. In our analysis, local orthonormal bases
aligned to the gradient and level-line directions of both functions will play an impor-
tant role. Given a locationx0 in the image domain, we will therefore denote byχ =
(cosϕ, sinϕ)T the normalised gradient vector off atx0. The unit vectorζ ⊥ χ then in-
dicates the local level line direction off . Analogously, we denote byη a normalised gra-
dient vector foru, and byξ ⊥ η the unit vector in the level line direction. The angle be-

tween the gradient directions will be calledα, such thatη =
(

cos(ϕ+α), sin(ϕ+α)
)T

.
We will prove the following fact.

Theorem 1. One step of amoeba median filtering of a smooth functionu governed by
amoebas generated fromf with an amoeba radius of̺ asymptotically approximates a
time step of sizeτ = ̺2/6 of an explicit time discretisation for the PDE

ut =
uξξ

1 + |∇f |2 sin2 α
− |∇f | |∇u|

1 + |∇f |2 sin2 α
·
(

fζζ cos3 α

1 + |∇f |2

+ 2 fζχ sin3 α+
fχχ cosα

(

2 + sin2 α+ 3 |∇f |2 sin2 α
)

(

1 + |∇f |2
)2

)

. (4)

Remark on the proof strategy. The proofs in [18, 19] were based on measuring level
line segments within the amoeba. Throughout the proofs, Taylor coefficients off and
u up to second order were used in the calculations. This strategy could be followed in
the more specialised cases treated in those papers. However, the complexity of such
calculations would increase a lot in the general case we are about to discuss. In the
following proof of the theorem we follow therefore a different strategy that measures
areas not segments but sectors of amoebas via a polar coordinate representation. Level
lines other than the one through the amoeba centre are not considered directly any more.

Finding the amoeba contour.To determine the shape of the amoebaA := Ax0
around

a pointx0 ∈ Ω, we start by considering the 1D case: givenf : IR → IR, we seek
z± ∈ IR such that the arc-length of the image graph off betweenx0 and each of
x0 + z+, x0 − z− equals̺ . Certainly,z± ≤ ̺.

Using Taylor expansions forf and the square root function, we have for the arc-
length fromx0 to x0 + z (wherez > 0)

x0+z
∫

x0

√

1 + f ′(x)2 dx = z
√

1 + f ′(x0)2 +
z2

2

f ′(x0) f
′′(x0)

√

1 + f ′(x0)2
+O(̺3) . (5)

Equating this to̺ yields a quadratic equation inz with the solutions

z1,2 =
1 + f ′(x0)

2

f ′(x0) f ′′(x0)

(

−1±
√

1 + ̺
f ′(x0) f ′′(x0)
(

1 + f ′(x0)
)3/2

)

+O(̺3) (6)
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−
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∆

(c)

Fig. 1. Left to right: (a) Area difference∆1 in an asymmetric amoeba with straight level lines.
– (b) Area difference∆2 in a symmetric amoeba with curved level lines. –(c) Compensation of
the area difference∆ by shifting the central level line (schematic).

which givesz+ as the “+” case (because ofz > 0). Using again the Taylor expansion
of the square root function, and doing an analogous derivation forz−, we arrive at

z± =
̺

√

1 + f ′(x0)2
∓ ̺2 f ′(x0) f

′′(x0)

2
(

1 + f ′(x0)2
)2 +O(̺3) . (7)

Turning to the 2D case, we approximate each shortest path in the amoeba metric from
x0 to a point on the amoeba contour by a Euclidean straight line in the image plane. This
introduces only anO(̺3) error for the path length. We consider now the straight line
throughx0 in the direction of a given unit vectorv ∈ IR2. By our previous 1D result,
with the directional derivativesfv(x0) = 〈v,∇f(x0)〉 andfvv(x0) = vTD2f(x0)v,
we see that said straight line intersects the amoeba contouratx0 ± z±(v) · v with

z±(v) =
̺

√

1 +
〈

v,∇f(x0)
〉2

∓ ̺2
〈

v,∇f(x0)
〉

vT D2f(x0)v

2
(

1 +
〈

v,∇f(x0)
〉2
)2 +O(̺3) . (8)

Contributions to the amoeba median.The median ofu within the structuring element
A equalsu(x0) if (a) the amoeba is point-symmetric w.r.t.x0, and (b) the level lines
of u are straight: The central level lineu(x) = u(x0) of u then bisectsA, i.e.A+ :=
{x ∈ A | u(x) ≥ u(x0)} andA− := {x ∈ A | u(x) ≤ u(x0)} have equal area. For a
similar bisection approach in a gradient descent for segmentation compare [10].

Deviations from conditions (a) and (b) lead to imbalances betweenA+ andA−. The
median is determined by the shift of the central level line that is necessary to compensate
for the resulting area difference. The separate area effects of asymmetry of the amoeba,
and curvature ofu’s level lines are of orderO(̺3), while any cross-effects are at least
of orderO(̺4), and can be neglected for the purpose of our analysis. Therefore, the two
effects can be studied independently.

Asymmetry of the amoeba.We start by analysing the effect of asymmetries of the point
setA, compare Figure 1(a). As the amoeba shape is governed byf , we will use theζ,
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χ local coordinates. For an arbitrary unit vectorv =
(

cos(ϕ + ϑ), sin(ϕ + ϑ)
)T

we
have then

fv(x0) = |∇f(x0)| cosϑ , (9)

vTD2f(x0)v = fζζ sin
2 ϑ+ 2 fζχ cosϑ sinϑ+ fχχ cos2 ϑ (10)

which can be inserted into (8) to obtainz±(ϕ+ ϑ) := z±(v).
Assume now thatu has straight level lines; remember thatϕ + α is the direction

angle of its gradient direction. Since the amoeba shape is given byz±(v) in polar coor-
dinates, the sought area difference is then obtained as

∆1 := |A+| − |A−| =
ϕ+α+π/2
∫

ϕ+α−π/2

(

z+(ϑ)− z−(ϑ)
) z+(ϑ) + z−(ϑ)

2
dϑ+O(̺4) .

(11)

The integral on the right-hand side equals

−̺3 |∇f |
α+π/2
∫

α−π/2

fζζ cosϑ sin2 ϑ+ 2 fζχ cos2 ϑ sinϑ+ fχχ cos3 ϑ
(

1 + |∇f |2 cos2 ϑ
)5/2

dϑ (12)

which evaluates to

−2

3
̺3 |∇f |

(

fζζ cos3 α
(

1 + |∇f |2
)(

1 + |∇f |2 sin2 α
)3/2

+
2 fζχ sin3 α

(

1 + |∇f |2 sin2 α
)3/2

+
fχχ cosα

(

2 + sin2 α+ 3 |∇f |2 sin2 α
)

(

1 + |∇f |2
)2(

1 + |∇f |2 sin2 α
)3/2

)

. (13)

Curvature of the level lines.The second source of area imbalance betweenA+ and
A− is the curvature of the level line ofu throughx0. Using theξ, η local coordinates
pertaining tou, this curvature equalsuξξ/(2|∇u|). The resulting area difference is

∆2 := |A+| − |A−| = −2

z+(ϕ+α+π/2)
∫

−z
−
(ϕ+α+π/2)

− uξξ

2 |∇u|z
2 dz +O(̺4)

=
2

3

uξξ

|∇u|
̺3

(

1 + |∇f |2 sin2 α
)3/2

+O(̺4) . (14)

Median calculation. As the medianµ of u within A belongs to the level line ofu that
bisects the area of the amoeba, the differenceµ − u(x0) corresponds to a shift of the
central level line that compensates the area difference∆1 +∆2. This compensation is
obtained when

2
µ− u(x0)

|∇u| ·
(

z+(ϕ+ α+ π/2) + z−(ϕ+ α+ π/2)
)

= ∆1 +∆2 +O(̺4) , (15)
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which finally givesµ = u(x0) + (̺2/6) · ut with ut given by (4) up to an errorO(̺).
This concludes the proof of Theorem 1.

Special cases.The following two statements reproduce the more specialised approxi-
mation results from [19] (in the case of theL2 amoeba metric) and [18], respectively.

Corollary 1. The amoeba median filter withf ≡ u/λ approximates the self-snakes
equation

ut =
uξξ

1 + |∇u|2/λ2
− 2 uηη |∇u|2

λ2
(

1 + |∇u|2/λ2
)2

= |∇u| div
(

1

1 + |∇u|2/λ2

∇u

|∇u|

)

(16)

in the sense of Theorem 1.

Corollary 2. If input imagef and evolving level-set imageu are rotationally symmetric
with respect to the origin, amoeba median filtering approximates the geodesic active
contour equation

ut =
uξξ

1 + |∇f |2 − 2 fηη |∇u| |∇f |
(

1 + |∇f |2
)2 = |∇u| div

(

1

1 + |∇f |2
∇u

|∇u|

)

(17)

in the sense of Theorem 1.

In the case of Corollary 1, one observes that its hypothesis entails that the identities
α = 0, ζ = ξ, andχ = η hold everywhere. For Corollary 2, the assumed rotational
symmetry yieldsα = 0, ζ = ξ, χ = η, uξη ≡ fξη ≡ 0, anduξξ/uη ≡ fξξ/fη.
Substituting the respective sets of identities into (4) implies the corollaries.

4 Comparison to Geodesic Active Contours

In the general amoeba active contour setting, however, it isevident that equation (4)
does not exactly coincide with (1). For a better understanding of the differences between
both active contour methods, we consider further typical configurations.

Homogeneous image gradients.In flat image regions (∇f = 0), geodesic active
contours (1) as well as amoeba active contours evolve the level set functionu by cur-
vature motion. Let us consider now an image region with a homogeneous non-zero
gradient,∇f = const. In such a region, geodesic active contours still perform curva-
ture motion, but with an evolution speed slowed down by the contrast-dependent factor
g(|∇f |2) = 1/(1 + |∇f |2). The amoeba-based PDE (4) in this case becomes

ut =
uξξ

1 + |∇f |2 sin2 α
, (18)

i.e. also a slowed-down curvature motion, but the evolutionis slowed down the less,
the more the level lines off andu are aligned. This leads to a faster straightening of
aligned contour segments, thereby boosting adaptation ofu’s level lines to those off ,
see the schematic representation in Figure 2(a).
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(a) (b) (c)

Fig. 2.Evolution of level lines under the PDE (4) in exemplary configurations (schematic). Solid
lines: level lines ofu, dashed lines: level lines off . Left to right: (a) In a region with homoge-
neous∇f , aligned level line segments ofu evolve faster. –(b) At a location with aligned∇u

and∇f , the contour evolves inward faster when the curvature ofu exceeds that off . – (c) At
locations with orthogonal∇u and∇f , the curvature-dependent movement of the contour is at-
tracted towards high-contrast regions off . Assuming thatη points to the right,fξη < 0 holds in
the left, andfξη > 0 in the right part, whileuξξ < 0 in both cases.

Aligned gradients. Relaxing the condition of Corollary 2, we assume now that the
gradient directions off andu coincide,α = 0, ζ = ξ, χ = η, but make no assumption
on their curvatures. At such a location, (4) takes the form

ut = uξξ − |∇f | |∇u|
(

fξξ
1 + |∇f |2 +

2 fηη
(

1 + |∇f |2
)2

)

=
uξξ

1 + |∇f |2 − 2 |∇f | |∇u| fηη
(

1 + |∇f |2
)2 +

2 |∇f |2 |∇u|
1 + |∇f |2

(

uξξ

2 uη

− fξξ
2 fη

)

(19)

which coincides with the corresponding geodesic active contour evolution except for
the last summand that speeds up the evolution if the level line curvatureuξξ/(2 uη) of
u exceeds that off , see Figure 2(b). The same offset is obtained in the anti-aligned
case,α = π, ζ = −ξ, χ = −η; note that the curvature off ’s level lines is measured
with respect to the orientation ofu’s level lines. Relative to geodesic active contours,
this implies an accelerated removal of sharp contour corners that do not match the given
imagef .

Orthogonal gradients. Consider now the complementary situation where the gradient
directions ofu andf are orthogonal, i.e.α = π/2, ζ = η, χ = −ξ. Then (4) becomes

ut =
uξξ

1 + |∇f |2 +
2 |∇f | |∇u| fξη

1 + |∇f |2 (20)

where the last summand is by a factor
(

1 + |∇f |2
)

larger than in the corresponding
geodesic active contour evolution. This means that attraction of the contour inu towards
high-contrast regions inf is strengthened, see Figure 2(c).

In summary, our findings indicate that compared to geodesic active contours (1) the
amoeba active contour equation (4) tends to attract the contouru faster to high-contrast
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image regions and to strengthen the alignment of level linesof u to those off . These
effects are in line with the somewhat finer adaptation of amoeba active contours to
structure details that was observed in [18].

5 Pre-smoothing and Amoeba Filters

The approximation result of [19], compare Corollary 1, refers to the self-snakes PDE
(1) with f ≡ u/λ. As pointed out in the introduction, a disadvantage of this PDE is its
ill-posedness that is often countered by pre-smoothing, i.e.

ut = |∇u| div
(

g(|∇uσ|2)
∇u

|∇u|

)

(21)

with uσ = Kσ ∗ u.
This procedure can be translated in a straightforward way toour amoeba median

filter setting. One only needs to carve the amoeba structuring elements based on the
pre-smoothed imageuσ instead ofu. The resulting filtering step is described by our
amoeba active contour model withf ≡ uσ/λ, such that the approximation result from
Theorem 1 applies. Analogous to our discussion in the amoebaactive contour setting
this means that in the limit̺ → 0 not exactly (21) is approximated but a self-snakes
equation with a modified pre-smoothing.

However, in practical computation of amoeba filters one always uses a positive
amoeba radius̺. This means that such a filtering procedure with amoebas derived from
f = uσ/λ would contain two spatial scale parameters,σ and̺, both of which act as
some sort of spatial averaging.

It can therefore be conjectured that the amoeba radius itself acts similarly as a pre-
smoothing step. While a more exhausting investigation of this issue has to be left for
future work, we compare pre-smoothed self-snakes withg(s2) = 1/(1+s2) to amoeba
median filtering (f = u) with positive amoeba radius for a very simple example.

Test case.We consider the functionu : IR2 → IR given by

u(x, y) = x+ ε cos(kx) , ε << 1 . (22)

It is composed of a simple linear slope (which would be stationary under each of the
filters) and single-frequency perturbations of small amplitude. We will analyse the re-
sponse of filters to that perturbation, dependent on the frequency parameterk.

Given the nonlinearity of the filters in question, there is nosuperposition property
for these perturbations. Nevertheless, sufficiently smallperturbations will interact with
each other only in higher order termsO(ε2), such that the technique will still give some
intuition of the behaviour of the filters.

The chosen setting is representative of the practically meaningful situation of stair-
casing arising in a smooth transition.
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Self-snakes.In our test case all level lines are parallel, so the 2D self-snakes equation
simplifies tout = g |∇u| div

(

∇u/|∇u|
)

+ 〈∇g,∇u〉. The first summand vanishes,
while the second one simplifies togxux. From (22) we obtainux = 1 − ε k sin(kx),
and withg as given by (2) furthergx = 1

2 ε k
2 cos(kx) +O(ε2). Thus, we have

ut = gxux =
ε k2

2
cos(kx) +O(ε2) (23)

indicating an indefinite amplification of higher frequencies. At the same time, the higher-
order terms resulting from nonlinearity lead to an instantaneous propagation of the per-
turbation from a given frequencyk to higher frequencies, which means that even for a
single-frequency perturbation arbitrarily high frequencies with arbitrarily high amplifi-
cation ratios will appear within short evolution time, enabling a loss of regularity of the
evolving function.

Pre-smoothing.Replacingg ≡ g(|∇u|2) with gσ ≡ g(|∇uσ|2), we have in our test
caseuσ = x + ε e−k2σ2/2 cos(kx), thus∂xgσ = ε k2

2 e−k2σ2/2 cos(kx) + O(ε2) and
finally

ut = ∂xgσ · ∂xu =
ε k2

2
e−k2σ2/2 cos(kx) +O(ε2) . (24)

Unlike before, the amplification ratiok2 exp(−k2σ2/2) is bounded and reaches a max-
imum fork =

√
2/σ, such that regularity of the evolving function is kept.

Amoeba filter with finite-size radius. We calculate the effect of amoeba median filter-
ing with amoeba radius̺on our test case in the same way as in the proof of Theorem 1
via the area difference∆ := |A1| − |A2|. As in our test settings level lines are not
curved, only the asymmetry contribution∆1 needs to be considered.

The amoeba aroundx0 = (x0, y0) is symmetric with respect to the liney = y0
(parallel to thex-axis). We parametrise this symmetry line as(x(s), y0), wheres is an
arc-length parameter in the amoeba metric, i.e.

x(s)
∫

0

√

1 + u2
x(z, y0) dz = s . (25)

From the level line through(x(s), y0) (parallel to they-axis), the amoeba cuts out a
piece of length2

√

̺2 − s2. The sought area difference is therefore

∆(x0) =

̺
∫

0

2
√

̺2 − s2
√

1 + u2
x(x(s), y0)

ds−
0
∫

−̺

2
√

̺2 − s2
√

1 + u2
x(x(s), y0)

ds

= 2

̺
∫

0

√

̺2 − s2

(

1
√

1 + u2
x(x(s), y0)

− 1
√

1 + u2
x(x(−s), y0)

)

ds (26)
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Fig. 3.Comparison of amplification
factors depending on the frequency
parameterk for pre-smoothed self-
snakes and amoeba median filtering
with fixed amoeba size. Horizontal
axis showsk, vertical axis shows
amplification factors.

with ux(x, y) = 1− k ε sin(k x).
Analogously to (15), the resulting median isu(x0) +∆(x0)/(4 ̺). Numerical in-

tegration of (26) confirms that∆(x, y0) itself is approximately a multiple of the pertur-
bation functionε cos(k x). For easy comparison with (24), we divide the amplification
factor∆(x, y0)/(4 ̺ cos(k x)) by ̺2/6 (the evolution time corresponding to amoeba
radius̺ in the asymptotic approximation results).

Figure 3 shows the numerically computed factor∆(x, y0)/(4 ̺ cos(k x)) · 6/̺2
along with the factork2 exp(−k2σ2/2)/2 from (24) as functions of the frequency pa-
rameterk. Here,̺ andσ were chosen for an optimal fit of the first maximum. It is
evident that the first lobe of the amplification functions is very similar. For higher fre-
quencies the exponential dampening of the pre-smoothed self-snakes is superior to the
oscillations of the amoeba amplification factor around a positive value. However, when
practically filtering images, higher frequencies are cut off by spatial discretisation any-
way. If the amoeba radius is not larger than approx.10/π ≈ 3, the higher lobes of the
amplification function in Figure 3 will disappear entirely.

6 Conclusion

We have analysed our amoeba active contour method proposed in [18] and derived a
partial differential equation that it approximates asymptotically for vanishing structur-
ing element size. Our result reproduces as special cases twoearlier results from lit-
erature: the approximation of geodesic active contours in aspecial case [18] and the
approximation of self-snakes by iterated amoeba median filtering [19]. In the general
case, the PDE derived here differs from the geodesic active contour equation. The im-
plications of the differences for active contour segmentation have been discussed and
found to be consistent with the experimental findings of [18].

Finally, we have discussed from the same view point the approximation of self-
snakes with pre-smoothing by amoeba filters. As a first step towards a more comprehen-
sive investigation of the relation between curvature-based PDEs with pre-smoothing,
and amoeba filtering with non-vanishing structuring elements, we have compared the
effect of both methods in a simple special case with single-frequency perturbations of
a constant gradient image. Future work extending this analysis is expected to lead to a
deeper understanding of the interplay between adaptive morphology and PDE methods.
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