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Abstract. Multivariate median filters have been proposed as generalisations of

the well-established median filter for grey-value images to multi-channel images.

As multivariate median, most of the recent approaches use the L1 median, i.e.

the minimiser of an objective function that is the sum of distances to all input

points. Many properties of univariate median filters generalise to such a filter.

However, the famous result by Guichard and Morel about approximation of the

mean curvature motion PDE by median filtering does not have a comparably

simple counterpart for L1 multivariate median filtering. We discuss the affine

equivariant Oja median as an alternative to L1 median filtering. We derive the

PDE approximated by Oja median filtering in the bivariate case, and demonstrate

its validity by a numerical experiment.

1 Introduction

In J.-F. Aujol, M. Nikolova, N. Papadakis, eds., Scale Space and Variational Methods in Computer

Vision, Lecture Notes in Computer Science, vol. 9087, pp. 53–65,

c©Springer International Publishing Switzerland 2015

Median filtering of signals and images goes back to the work of Tukey [17] and has

since then been established in image processing as a simple and robust denoising method

for grey-value images with favourable structure-preserving properties.

Like other local image filters, the median filter consists of a selection step that iden-

tifies for each pixel location those pixels which will enter the computation of the filtered

value at that location, followed by an aggregation step that combines the intensities of

these pixels into the filtered value. In the standard setting, the selection step uses a fixed-

shape sliding window, which can be called structuring element following the naming

convention from mathematical morphology. The aggregation step consists in taking the

median of the selected intensities. The process can be iterated, giving rise to what is

called iterated median filter.

The median filter, particularly in its iterated form, has been subject to intensive in-

vestigation over the decades. For example, [7] studied so-called root signals, non-trivial

steady states that occur in the iterated median filter and depend subtly on the choice of

the structuring element. Work by Guichard and Morel [9] has identified iterated median

filtering as an explicit nonstandard discretisation of (mean) curvature motion [1], thus

bridging the discrete filter concept with a partial differential equation (PDE).

Multivariate median filtering. Given the merit of median filtering in processing grey-

value images one is interested in stating also a median filter for multi-channel images
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such as colour images, flow fields, tensor fields etc. As the switch from single- to multi-

channel images does not affect the selection step mentioned above but solely the ag-

gregation, it is clear that what is needed to accomplish this goal is the definition of a

multivariate median. A starting point for such a definition is the following characteri-

sation of the univariate median: The median of a finite set of real numbers is the real

number that minimises the sum of distances to all numbers of the set. There happens to

always exist a number within the given set for which this minimum is attained.

Early attempts to multi-channel median filtering, starting from [2] in 1990, defined

therefore a vector-valued median (actually a medoid) that selects from the set of input

points in IRn the one that minimises the sum of distances to all other sample points.

More recent approaches, such as [12, 16] for colour images or [22] for symmetric

matrices, rely on the same minimisation but without the restriction to the given data

points. The underlying multivariate median concept is known in the statistics literature

as spatial median or L1 median. It can be traced back to work by Hayford from 1902

[10] and Weber from 1909 [18], followed by [3, 8, 19] and many others.

However, this is not the only multivariate median concept in literature. For example,

the simplex median established by Oja in 1983 [13] generalises the distances between

points on the real line from the univariate median definition not into distances but into

simplex volumes in higher dimensions. Thus, the simplex median of a finite set of points

in IRn is the point p ∈ IRn that minimises the sum of simplex volumes |[p,a1, . . . ,an]|
where ai are distinct points of the input data set. An advantage of this concept that is

relevant for many statistics applications is its affine equivariance, i.e. that it commutes

with affine transformations of the data space. In contrast, the L1 median only affords

Euclidean equivariance. The Oja simplex median is not the only affine equivariant me-

dian concept; other concepts have been developed by modifying the L1 median e.g. in

[4, 11, 14], see also the survey in [5]. For further multivariate concepts see the review

[15].

Multivariate median filters and PDE. While the above-mentioned relationship between

univariate median filtering and the mean curvature motion PDE could be extended to

relate also adaptive median filtering procedures [21] and further discrete filters [20]

to well-understood PDEs of image processing, the picture changes when turning to

multivariate median filtering. As demonstrated in [20], it is possible to derive some

PDE for median filtering based on the spatial median as in [16]. However, this PDE

involves complicated coefficient functions coming from elliptic integrals most of which

cannot even be stated in closed form, see Section 3.1 of this paper.

Therefore the question arises whether other multivariate median concepts could be

advantageous in multi-channel image processing. The present paper is intended as a

first step in this direction.

Our contribution. In this paper, we focus strictly on the bivariate case (e.g. two-channel

images or 2D flow fields). We juxtapose the L1 median and Oja median in the context

of image filtering as well as in terms of basic geometric properties, and present PDEs

approximated by both kinds of median filters. The novel PDE for Oja median filtering

is validated by a numerical experiment.
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a b c

Fig. 1. Median filtering of an image with two colour channels. (a) Test image, 512 × 512 pixels,

reduced to a yellow–blue colour space. – (b) Filtered by one L1 median filtering step with a disc-

shaped structuring element of radius 5. – (c) Filtered by one Oja median filtering step with the

same structuring element as in (b).

Structure of the paper. In Section 2, we demonstrate bivariate median filtering by L1

and Oja median on a simple two-channel colour image, and discuss basic geometric

properties of both median concepts. Section 3 is dedicated to PDE approximation re-

sults that generalise Guichard and Morel’s [9] result for univariate median filtering. For

L1 median filtering, the known result from [20] is rephrased more explicitly for the bi-

variate case. For Oja median filtering, a PDE is derived in Section 3.2 for the first time,

which is the main result of this paper. This PDE is afterwards validated by a numerical

experiment in Section 4. A summary and outlook in Section 5 conclude the paper.

2 Comparison of L1 and Oja Median

Median filter demonstration. We start by demonstrating L1 and Oja medians in the role

of image filters. Since this paper focusses on the bivariate case, we can think e.g. of two-

channel colour images or 2D flow fields as examples. While the latter are practically

more relevant than the earlier, we prefer two-channel images here because the main

focus of the present paper is theoretical, and two-channel images are visually easy to

understand. To this end, a RGB colour image has been reduced to a yellow–blue colour

space by averaging the red and green channels, see Figure 1(a). This image has been

filtered by L1 and Oja median filtering with identical parameters in Figure 1(b) and (c),

respectively. The results of both filters look fairly similar. They display the same kind

of structure simplification and smoothing contours as known from median filters.

Geometric facts about L1 and Oja median. To add some geometric intuition about the

bivariate median filters under investigation, we consider small point sets in the plane

and their medians. The following statements can easily be inferred from standard el-

ementary geometry arguments such as the triangle inequality (for the L1 median) and

multiplicities of covering of the convex hull of input points by the triangles with input

and median points as corners (for the 2D Oja median).

For two points, the L1 median criterion is fulfilled equally for all points of their

connecting line segment. The Oja median criterion is even fulfilled by all points of
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a b c

d e

Fig. 2. Simple configurations of input data points (solid points) with their L1 medians (squares)

and Oja medians (triangles). (a) Three points forming a triangle with all interior angles less than

120 degrees: The L1 median is the Steiner point; any point within the triangle is an Oja median.

– (b) Three points forming a triangle with an obtuse angle of 120 degrees or more: The obtuse

corner is the L1 median; still, all points within the triangle are Oja medians. – (c) Four points

forming a convex quadrangle: L1 and Oja median coincide at the intersection of the diagonals. –

(d) Four points whose convex hull is a triangle: L1 and Oja median coincide at the data point that

is not a corner of the convex hull. – (e) 2n points that form a convex 2n-gon (hexagon shown as

example) in which all diagonals between opposing points have a common intersection point: L1

and Oja median coincide at this intersection point.

the straight line through these points since the Oja median definition degenerates for

collinear sets of points. While this degeneracy can be mitigated by adding a continuity

criterion, we do not further treat degenerate cases within the present paper.

For three points, the L1 median depends on the sort of triangle they span. If all of

its interior angles are smaller than 120 degrees, see Figure 2(a), the sum of distances to

the corners is minimised by a unique point known as Steiner point or Fermat-Torricelli

point, from which all sides of the triangle are seen under 120 degree angles. For a

triangle with an obtuse corner of at least 120 degrees, this corner is the L1 median,

see Figure 2(b). The Oja median criterion is met in both cases by all points of the

triangle. This is consistent with the affine equivariance of the Oja median that does not

discriminate triangles by shape. It also shows how indeed simplices take the role of line

segments from the univariate median definition – the three-point case of the bivariate

Oja median is the analogue of the two-point case of the univariate median.

For four points, L1 and Oja median always coincide: If the convex hull of the data

points is a triangle, then the data point that is not a corner of the convex hull is the

median, see Figure 2(d); if it is a convex quadrangle, then the intersection point of its

diagonals is the median, see Figure 2(c).

The coincidence between L1 and Oja median continues also in some configurations

of more data points. A (non-generic) example is shown in Figure 2(e): A convex 2n-gon

in which all the diagonals that bisect the point set (i.e. those that span n sides) have a

common intersection point, features this point as L1 and Oja median.

We point out two observations that can be made from these simple configurations.

Firstly, bivariate medians, unlike their univariate counterpart, cannot always be chosen
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from the input data set, but they happen to be input data points in some generic config-

urations. Only in cases when none of the input points lies sufficiently “in the middle”

of the data, a new point is created. Secondly, despite their different definitions, also L1

and Oja median coincide in some generic situations, or are not far apart from each other.

This adds plausibility to why the image filtering results in Figure 1 are that similar.

3 PDE Limit Analysis

In this section, we study median filters in a space-continuous setting. As proven in [9],

a univariate median filtering step of an image with disc-shaped structuring element of

radius ̺ approximates for ̺ → 0 a time step of size τ = ̺2/6 of an explicit scheme

for the mean curvature motion PDE. We will present PDEs that are approximated in the

same sense by L1 and Oja median filtering of bivariate images.

The reformulation of a local image filter to a space-continuous setting is straight-

forward. The main modification is that the set of values that is returned by the selection

step and is processed further in the aggregation step is now infinite and equipped with

a density. This density is induced from the uniform distribution of function arguments

in the structuring element in the image domain via the Jacobian of the image function.

3.1 L1 Median

An analysis of the L1 multivariate median filter for images u : IR2 ⊃ Ω → IRn has

been given in [20]. Here, we break down the essential result to the bivariate case n = 2.

Proposition 1. One step of L1 median filtering of a bivariate image u : IR2 ⊃ Ω →
IR2, (x, y) 7→ (u, v), with a disc-shaped structuring element D̺ of radius ̺ approxi-

mates for ̺ → 0 an explicit time step of size τ = ̺2/6 of the PDE system
(

ut

vt

)

= S(∇u,∇v)

(

uηη

vηη

)

+ T (∇u,∇v)

(

uξξ

vξξ

)

(1)

where η is the major, and ξ the minor eigenvector of the structure tensor

J := J(∇u,∇v) := ∇u∇uT + ∇v∇vT. The coefficient matrices S(∇u,∇v),
T (∇u,∇v) are given by

S(∇u,∇v) := Rdiag
(

Q1

(

|∂ηu|/|∂ξu|
)

, Q2

(

|∂ηu|/|∂ξu|
)

)

RT , (2)

T (∇u,∇v) := Rdiag
(

Q2

(

|∂ξu|/|∂ηu|
)

, Q1

(

|∂ξu|/|∂ηu|
)

)

RT , (3)

where R = (Du−1)T P diag(|∂ηu|, |∂ξu|) is a rotation matrix that depends on the

JacobianDu of u and the eigenvector matrix P =
(

η | ξ
)

of J . The functions Q1, Q2 :
[0,∞] → IR are given by the quotients of elliptic integrals

Q1(λ) = 3

∫∫

D1(0)

s2t2

(s2 + λ2t2)3/2
ds dt

/

∫∫

D1(0)

s2

(s2 + λ2t2)3/2
ds dt , (4)

Q2(λ) = 3

∫∫

D1(0)

t4

(s2 + λ2t2)3/2
ds dt

/

∫∫

D1(0)

t2

(s2 + λ2t2)3/2
ds dt (5)
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for λ ∈ (0,∞), together with the limits Q1(0) = Q2(0) = 1, Q1(∞) = Q2(∞) = 0.

The proof relies on the following statement which is proven in [20].

Lemma 1 (from [20]). Let u be given as in Proposition 1. Assume that the Jacobian

Du at some location (x, y) is diagonal, i.e. uy = vx = 0, and ux ≥ vy ≥ 0. Then

one step of L1 median filtering with structuring element D̺ approximates for ̺ → 0 at

(x, y) an explicit time step of size τ = ̺2/6 of the PDE system

ut = Q1(ux/vy)uxx +Q2(vy/ux)uyy ,

vt = Q2(ux/vy)vxx +Q1(vy/ux)vyy ,
(6)

with the coefficient functions Q1, Q2 as stated in Proposition 1.

Proof (of Proposition 1). Consider an arbitrary fixed location (x∗, y∗). By applying

rotations with P in the x-y plane and with R in the u-v plane, x, y can be aligned with

the eigenvector directions η and ξ, and u, v with the corresponding derivatives ∂ηu,

∂ξu. Then Lemma 1 can be applied. Reverting the rotations in the x-y and u-v planes,

the PDE system (6) turns into the system (1)–(3) of the proposition. �

Remark 1. The derivation of the PDE (1) from a special case by Euclidean transform

immediately implies its Euclidean equivariance.

Remark 2. The vectors η and ξ used in (1)–(3) are the directions of greatest and least

change of the bivariate function u, thus the closest analoga to gradient and level line di-

rections of univariate images, see [6]. The use of these image-adaptive local coordinates

characterises (1) as a curvature-based PDE remotely similar to the (mean) curvature

motion PDE approximated by univariate median filtering.

3.2 Oja’s Simplex Median

Theorem 1. Let a bivariate image u : IR2 ⊃ Ω → IR2, (x, y) 7→ (u, v), be given.

At any location where detDu 6= 0, one step of Oja median filtering of u with the

structuring element D̺ approximates for ̺ → 0 an explicit time step of size τ = ̺2/24
of the PDE system

(

ut

vt

)

= 2

(

uxx+uyy

vxx+vyy

)

−A(∇u,∇v)

(

uxx−uyy

vyy−vxx

)

+B(∇u,∇v)

(

uxy

−vxy

)

(7)

with the coefficient matrices

A(∇u,∇v) :=
1

uxvy − uyvx

(

uxvy + uyvx 2uxuy

2vxvy uxvy + uyvx

)

, (8)

B(∇u,∇v) :=
2

uxvy − uyvx

(

uxvx − uyvy u2
x − u2

y

v2x − v2y uxvx − uyvy

)

. (9)
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M A

B

FM;AB

Fig. 3. Anti-gradient vector FM;AB for the area of a

triangle MAB with variable point M .

Proof. We consider the median of the values u(x, y) within the Euclidean ̺-neigh-

bourhood of (0, 0), and assume detDu(0) 6= 0. By the affine equivariance of Oja’s

simplex median, the u-v plane can be transformed in such a way that the Jacobian Du

at (x, y) = (0, 0) becomes equal to the unit matrix, i.e. ux = vy = 1, uy = vx = 0, and

u(0, 0) = v(0, 0) = 0. Then the Taylor expansion of (u, v) up to second order around

(0, 0) reads as

(

u(x, y)
v(x, y)

)

=

(

x
y

)

+

(

αx2 + βxy + γy2

δx2 + εxy + ζy2

)

, (10)

where the coefficients are given by derivatives of u, v at (x, y) = (0, 0) as

α = 1
2uxx(0, 0) , β = uxy(0, 0) , γ = 1

2uyy(0, 0) , (11)

δ = 1
2vxx(0, 0) , ε = vxy(0, 0) , ζ = 1

2vyy(0, 0) . (12)

Restating the definition of Oja’s simplex median for continuous data sets with den-

sity function f(u, v), we seek the point M := (u∗, v∗) which minimises the integral

over all areas of triangles MAB with A = (u1, v1) and B = (u2, v2) with (u1, v1) =
(u(x1, y1), v(x1, y1)), (u2, v2) = (u(x2, y2), v(x2, y2)), (x1, y1), (x2, y2) ∈ D̺(0, 0),
weighted with the density f(u1, v1)f(u2, v2).

For each triangle MAB, the negative gradient of its area as function of M is a

force vector FM ;AB perpendicular to AB with a length proportional to the length |AB|,
see Figure 3. Assuming that MAB is positively oriented, this vector equals 1

2 (y2 −
y1,−x2 + x1).

Sorting the pairs (A,B) by the orientation angles ϕ of the lines AB, we see that the

minimisation condition for the Oja median can be expressed as

Φ(u∗, v∗) =
1

2

∫ 2π

0

(

cosϕ
sinϕ

)

F (u∗, v∗, ϕ) dϕ = 0 . (13)

Here, F (ϕ) is essentially the resultant of all forces FM ;AB for which the line AB
intersects the ray fromM in direction (cosϕ, sinϕ) perpendicularly. Each forceFM ;AB

is weighted with the combined density f(A)f(B) = f(u1, v1)f(u2, v2).
Moreover, u∗, v∗ will be of order O(̺) (in fact, even O(̺2)). Thus, (u∗, v∗) can be

expressed up to higher order terms via linearisation as

(

u∗

v∗

)

= −
(

DΦ(0, 0)
)

−1
Φ(0, 0) . (14)
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We therefore turn now to derive an expression for F (0, 0, ϕ). Considering first ϕ =
0, this means that all point pairs (A,B) in the u-v right half-plane with u1 = u2

contribute to F (0, 0, 0), yielding

F (0, 0, 0) =

∫ +∞

0

∫ +∞

−∞

∫ +∞

v

f(u, v)f(u,w)(w − v)2 dw dv du . (15)

Note that the factor (w − v) occurs squared in the integrand. One factor (w − v) orig-

inates from the length of the triangle baseline AB. The second factor (w − v) results

from the fact that we have organised in (13), (15) an integration over point pairs (A,B)
in the plane using a polar coordinate system similar to a Radon transform; w− v arises

as the Jacobian of the corresponding coordinate transform from Cartesian to Radon

coordinates. The derivatives of F (u∗, v∗, 0) with regard to the coordinates of M are

Fu∗(0, 0, 0) = −

∫ +∞

−∞

∫ +∞

v

f(0, v)f(0, w)(w − v)2 dw dv , (16)

Fv∗(0, 0, 0) = 0 . (17)

Forces F (0, 0, ϕ) and their derivatives for arbitrary angles ϕ can be obtained from (15),

(16), (17) by rotating the u, v coordinates accordingly.

When considering a ̺-neighbourhood of (x, y) = (0, 0), the density f(u, v) is zero

outside of an O(̺)-neighbourhood of (0, 0), allowing to limit the indefinite integrals

from (15) to the intervals u ∈ [u∗, ū], v ∈ [
¯
v(u), v̄(u)] and w ∈ [v, v̄(u)] such that

F (0, 0, 0) =

∫ ū

0

∫ v̄(u)

¯
v(u)

∫ v̄(u)

v

f(u, v)f(u,w)(w − v)2 dw dv du (18)

and similarly for (16).

To compute F (0, 0, 0) and Fu∗(0, 0, 0), we write them as functions of the coeffi-

cients of (10), i.e. F (0, 0, 0) =: G(α, β, γ, δ, ε, ζ) andFu∗(0, 0, 0) =: H(α, β, γ, δ, ε, ζ).
We will linearise G and H around the point (α, β, γ, δ, ε, ζ) = 0 that represents

the linear function (u(x, y), v(x, y)) = (x, y). To justify this linearisation, remember

that we are interested in the limit ̺ → 0, such that only the terms of lowest order in ̺
matter. Cross-effects between the different coefficients occur only in higher order terms.

Denoting from now on by
.
= equality up to higher order terms, we have therefore

G
.
= G0 +G0

αα+G0
ββ +G0

γγ +G0
δδ +G0

εε+G0
ζζ , (19)

H
.
= H0 +H0

αα+H0
ββ +H0

γγ +H0
δ δ +H0

ε ε+H0
ζ ζ (20)

where G0, G0
α etc. are short for G(0), Gα(0) etc.

To compute G0 and H0, we insert into (15) the bounds ū = ̺, v̄(u) =
√

̺2 − u2,

¯
v(u) = −v̄(u). The density becomes constant within the region defined by ū,

¯
v(u) and

v̄(u), with f(u, v) = 1. Thus (18) and (16) yield

G0 = 32
45̺

5 , H0 = − 4
3̺

4 . (21)

For G0
α and H0

α, one has to vary α to obtain the bounds ū = ̺ + α̺2, v̄(u) =
√

̺2 − u2 − 2αu3,
¯
v(u)

.
= −v̄(u). The density f(u, v) within the so-given bounds
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is 1/det(Du) at the location (x(u, v), y(u, v)) with x = u− αu2 +O(̺3), y = v, i.e.

f(u, v) = 1− 2αu+O(̺2). Thus we have

G0
α

.
=

d

dα

∫ ū

0

∫ v̄(u)

¯
v(u)

∫ v̄(u)

v

(1− 2αu)2(w − v)2 dw dv du

∣

∣

∣

∣

α=0

= − 4
9̺

6 , (22)

H0
α

.
= −

d

dα

∫ v̄(0)

¯
v(0)

∫ v̄(0)

v

(w − v)2 dw dv

∣

∣

∣

∣

α=0

= 0 . (23)

Proceeding similarly for the other coefficients, we find

– forG0
β , H0

β: ū = ̺, v̄
.
=

√

̺2 − u2 + β2u4+βu2,
¯
v

.
= −

√

̺2 − u2 + β2u4+βu2,

f(u, v)
.
= 1− βv;

– for G0
γ , H0

γ : ū = ̺, v̄
.
=

√

(̺2 − u2)(1 + 2γu),
¯
v

.
= −v̄, f(u, v) = 1;

– for G0
δ , H0

δ : ū = ̺, v̄
.
=

√

̺2 − u2 + δ2u4+ δu2,
¯
v

.
= −

√

̺2 − u2 + δ2u4+ δu2,

f(u, v) = 1;

– for G0
ε, H0

ε : ū = ̺, v̄
.
=

√

(̺2 − u2)(1 + 2εu),
¯
v

.
= −v̄, f(u, v)

.
= 1− εu;

– for G0
ζ , H0

ζ : ū = ̺, v̄
.
=

√

̺2 − u2 + ζ(̺2 − u2),
¯
v

.
= −

√

̺2 − u2 + ζ(̺2 − u2),
f(u, v)

.
= 1− 2ζv.

From these it follows that

G0
γ = 8

9̺
6 , G0

ε = 4
9̺

6 , G0
β = G0

δ = G0
ζ = H0

β = H0
γ = H0

δ = H0
ε = H0

ζ = 0 .
(24)

Inserting (21), (22), (23), (24) into (19) and (20), we have

F (0, 0, 0) = 32
45̺

5 + 4
9̺

6(−α+ 2γ + ε) , Fu∗(0, 0, 0) = 4
3̺

4 , (25)

and by orthogonal transform in the u-v plane

F (0, 0, ϕ) = 32
45̺

5 + 4
9̺

6
(

−(α cosϕ+ δ sinϕ) cos2 ϕ

− 2(β cosϕ+ ε sinϕ) cosϕ sinϕ− (γ cosϕ+ ζ sinϕ) sin2 ϕ

+ 2(α cosϕ+ δ sinϕ) sin2 ϕ− 4(β cosϕ+ ε sinϕ) cosϕ sinϕ

+ 2(γ cosϕ+ ζ sinϕ) cos2 ϕ− 2(−α sinϕ+ δ cosϕ) cosϕ sinϕ

+ (−β sinϕ+ ε cosϕ)(cos2 ϕ− sin2 ϕ)

+ 2(−γ sinϕ+ ζ cosϕ) cosϕ sinϕ
)

, (26)

Fu∗(0, 0, ϕ) = 4
3̺

4 cosϕ , Fv∗(0, 0, ϕ) = 4
3̺

4 sinϕ . (27)

Integration (13) then yields

Φ(0, 0) =
π

18
̺6

(

α+ 3γ − ε
−β + 3δ − ζ

)

, DΦ(0, 0) = −
2

3
π̺4

(

1 0
0 1

)

(28)

and via (14) eventually
(

u∗

v∗

)

=
̺2

12

(

α+ 3γ − ε
−β + 3δ + ζ

)

. (29)
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Inserting (11), (12) into (29), we see that for Du = diag(1, 1) the Oja median filtering

step approximates an explicit time step of size τ = ̺2/24 of the PDE system

ut = uxx + 3uyy − 2vxy , vt = 3vxx + vyy − 2uxy . (30)

Transfer to the general case with arbitrary Du is accomplished by an affine transforma-

tion in the u-v coordinates. This yields the PDE system from equations (7)–(9) of the

theorem. �

Remark 3. The derivation of the PDE of Theorem 1 by affine transformation immedi-

ately implies its affine equivariance.

Remark 4. The equations (7)–(9) are degenerate at locations where detDu = 0. This

corresponds to the degeneracy of the Oja median itself for collinear input data. Future

work will be concerned with this non-generic case.

Remark 5. The eigenvector directions η and ξ of the structure tensor do not appear in a

natural way in the presentation of (7). This is plausible because these eigenvectors are

strongly related with a Euclidean geometry concept of the u-v plane, and are thereby

inappropriate for an affine equivariant process like Oja median filtering.

4 Experimental Demonstration of Oja Median Filtering

To demonstrate the validity of the PDE approximation result stated in Theorem 1, we

consider a simple bivariate example function given by

u(x, y) = x2 , v(x, y) =
√

x2 + y2 . (31)

Level sets of u and v for this function in the range [0, 1]× [0, 1] are depicted in Figure 4.

In this figure, also seven test locations a–g are depicted for which Table 1 contains

analytically computed time steps (τu1, τvt) of the PDE (7) and results of numerical

approximations of the Oja median on a discrete grid within a structuring element of

radius ̺ = 0.1. For the Oja median computation, we first normalise the input data set

by a principal axis transform to zero mean and isotropic unit standard deviation, and

apply then a gradient descent method with adaptive step size control, after which the

normalising transform is reverted.

The results for locations b, c, d and g in Table 1 confirm that in the generic setting

where detDu is sufficiently far away from zero, the PDE time step and the median up-

date (u∗−u, v∗−v) computed on the discrete grid match each other well. The observed

relative errors in the range of ≤ 3% (based on the Euclidean norm of (τut, τvt)) are

reasonable given the structuring element radius ̺ = 0.1 and the grid resolution.

Larger discrepancies are observed for locations a, e, and f which are closer to the

coordinate axes. Note that on the x axis, Du becomes singular due to coinciding gra-

dient directions for u and v, while on the y axis it does so due to the vanishing of ∇u.

These discrepancies indicate numerical problems of the median computation rather than

inaccuracy of the PDE, pointing to the need for algorithmic improvements in the Oja

median computation.
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a

b

c

d
e

f

g

0

1

1
x

y

Fig. 4. Example function (u, v) = (x2,
√

x2 + y2) used

to demonstrate PDE approximation of Oja median filter-

ing. Dot-dashed lines are level lines u = const, dashed

lines are level lines v = const. Points a–g are the sample

locations for which numerical results are given in Table 1,

surrounded by their structuring elements as solid circles.

5 Summary and Outlook

In this paper, we have analysed the Oja median filter in the bivariate case and shown

that it asymptotically approximates for vanishing structuring element size a second-

order PDE which is more favourable than that approximated by the more popular L1

median filter. This gives a strong motivation to deeper investigate the applicability of

Oja median filtering in multi-channel image processing.

The proof of Theorem 1 will be presented in more detail in forthcoming work, where

also the degenerate case detDu will be given broader attention. It will be of high inter-

est to extend our results from the bivariate to the general multivariate case. Moreover,

analysis of further multivariate median filters proposed in the statistical literature, as

mentioned in the introduction, is another goal of ongoing research.

Finally, a straightforward computation of the Oja median filter has higher complex-

ity than that of the L1 median filter (due to the point pairs to be iterated over instead of

points). Further development of efficient algorithms will therefore be important in order

to establish Oja median filtering as a practical image filter.

Table 1. Comparison of analytically computed time steps (τut, τvt) of the PDE (7)–(9) with

numerical computation of the Oja median (u∗, v∗) for the function (u, v) = (x2,
√

x2 + y2).
To compute (u∗, v∗), the structuring element of radius ̺ = 0.1 was sampled using a grid with

spatial mesh size h = 0.001, generating about 31,000 data points. The time step size for (7) was

chosen as τ = ̺2/24 = 0.4167.

Location Function value PDE time step Discrete Oja median

x0 y0 u v τut τvt u∗ − u v∗ − v

a) 0.9986 0.0523 0.9973 1.0000 0.002 495 0.000 417 0.001 896 0.000 538
b) 0.9659 0.2588 0.9330 1.0000 0.002 388 0.000 417 0.002 355 0.000 417
c) 0.7071 0.7071 0.5000 1.0000 0.001 667 0.000 417 0.001 650 0.000 404
d) 0.2588 0.9659 0.0670 1.0000 0.000 945 0.000 417 0.000 943 0.000 407
e) 0.0523 0.9986 0.0027 1.0000 0.000 838 0.000 417 0.000 920 0.000 448
f) 0.1000 0.1000 0.0100 0.1414 0.001 667 0.002 946 0.001 587 0.003 668
g) 0.3000 0.3000 0.0900 0.4243 0.001 667 0.000 982 0.001 654 0.001 009
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