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Abstract. In recent work by Liu, Chang and Ma a variational blind deconvolu-
tion approach with alternative estimation of image and point-spread function was
presented in which an innovative regulariser for the point-spread function was
constructed using the convolution spectrum of the blurred image. Further work
by Moser and Welk introduced robust data fidelity terms to this approach but did
so at the cost of introducing a mismatch between the data fidelity terms used in
image and point-spread function estimation. We propose an improved version of
this robust model that avoids the mentioned inconsistency. We extend the model
to multi-channel images and show experiments on synthetic and real-world im-
ages to compare the robust variants with the method by Liu, Chang and Ma.

1 Introduction

In F. Lauze, Y. Dong, A. B. Dahl, eds., Scale Space and Variational Methods in Computer Vision,
Lecture Notes in Computer Science, vol. 10302, pp. 159–171,
c©Springer International Publishing Switzerland 2017

Since noise and blur are the two most important and ubiquitous sources of degradations
in virtually all modalities of image acquisition, methods to enhance images degraded
by blur have been an object of intensive research since the early times of image pro-
cessing. Blur is a spatial redistribution of image intensities; in the simple case when
the redistribution follows the same spatial pattern at all image locations it is modelled
by convolution of the (unobservable) sharp image g with a space-invariant point-spread
function (PSF) h as convolution kernel, i.e.

f = g ∗ h+ n , (1)

where f denotes the observed degraded image, and additive noise n has been included
in the model. In a similar way spatially variant blur can be modelled by replacing the
convolution ∗ in (1) with a Fredholm integral operator. Methods that aim at a com-
putational (approximate) inversion of the blur process (1) (or its more general space-
invariant version that we will not treat any further here) are called deconvolution. Two
types of deconvolution problems are to be distinguished: Non-blind deconvolution as-
sumes that the image f as well as the PSF h are known, and an image u is to be found
that fulfils f ≈ u ∗ h, such that u can be considered as an approximation of g. Blind
deconvolution methods take only an image f as input and aim at reconstructing u and h
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at the same time. Both types of deconvolution problems are ill-posed inverse problems
but of course blind deconvolution is the harder of the two.

One class of approaches to blind deconvolution are variational models that involve
minimisation of an energy functional of type [2, 20]

E(u, h) = F (f, u ∗ h) + αRu(u) + βRh(h) (2)

where F (f, u∗h) is a data fidelity term that penalises deviations from the blur equation
f = u ∗ h, and brings in the information of the observed image; possible choices will
be discussed in more detail later in this paper. Ru and Rh are regularisers for the image
and PSF, respectively, that encode assumptions on plausible images and PSFs.

Minimisation of (2) is often done by alternating minimisation, which iteratively
improves estimates for u and h by minimising, respectively, the reduced functionals

E(u) = F (f, u ∗ h) + αRu(u) , (3)
E(h) = F (f, u ∗ h) + βRh(h) . (4)

Note that (3) alone is just a variational model for non-blind deconvolution.
Regarding images, smoothness requirements play an important role; these can be

encoded by regularisers Ru that impose increasing functions of |∇u| at each image
location as penalisers.

Whereas the suitability of this class of image regularisers is widely agreed in the
field, regularisers Rh for PSFs are more difficult to formulate. Transferring the smooth-
ness-based image regularisers to PSFs has been tried early [2, 20], its success has been
limited: firstly, smoothness is an adequate characterisation only of some practically
relevant PSFs (such as Gaussian blur); secondly, it misses other important properties of
PSFs such as locality and sparsity of support. In recent years, maximum a posteriori [?]
and machine-learning approaches [13] for the regularisation of h have been proposed.

In [8] a PSF regulariser based on spectra of convolution operators was introduced,
and used within an alternating optimisation approach based on an energy functional of
type (2). This is an interesting new approach to the estimation of blur as it uses informa-
tion from the observed image f to constrain the PSF. The data fidelity term in [8] uses
classical quadratic penalisation. As it is known from the image processing literature that
data fidelity terms based on less-than-quadratic penalisation allow a more robust min-
imisation, i.e. reduce sensitivity to extreme noise, outliers, and model violations [1, 4,
18, 21], the authors of [9] proposed a modification of the model from [8] with these so-
called robust data fidelity terms. This model, however, suffers from a mismatch between
the data fidelity terms used in the image and PSF estimation.

Our contribution. In this paper we improve the blind deconvolution model from [9]
by using consistently one type of robust data fidelity term in both components of the
alternating minimisation model. To this end, we modify the PSF estimation step of [9]
to adopt the data fidelity term from [16] that was used in [9] only for image estimation.

To enable the processing of colour images, we state shortly multi-channel versions
of the blind deconvolution model from [9] as well as of the new model. We present
experiments on synthetic test images without and with noise that show the viability of
the new model and illustrate the usefulness of the robust blind deconvolution models
for noisy input data, and on a real-world colour image.
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Structure of the paper. The two components of alternating minimisation models as they
are used in [8, 9] and our new model are discussed in the next two sections: Section 2 re-
calls the image estimation models from [6, 14, 16] that are used in [8, 9] and also in the
present paper. Section 3 is devoted to PSF estimation; it recalls the PSF regularisation
procedures from [8, 9], and introduces our further modification of the latter model. Sec-
tion 4 translates the estimation procedures to multi-channel images. Section 5 presents
experimental results. Section 6 concludes the paper with a short summary and outlook.

2 Image Estimation

The estimation of the image u in the alternating minimisation of (2) is a non-blind
deconvolution based on minimising (3) for which several methods exist in the literature.
We recall shortly the approaches chosen in [8] and [9] for this purpose.

Krishnan-Fergus method [6]. In [8] the method from [6] is used for the non-blind
deconvolution step. Like the very similar method published earlier in [14], it aims at
minimising a functional (3) in which the quadratic data fidelity term

F (f, u ∗ h) =
∫
Ω

%(f, u ∗ h) dx , (5)

%(f, v) ≡ %quad(f, v) := (f − v)2 , (6)

is combined with a regulariser Ru of type

Ru(u) =

∫
Ω

|∇u|ν dx =:

∫
Ω

Ψ
(
|∇u|2

)
dx , (7)

where ν equals 1 in [14], and can take different discrete values in [6]; in [8] the case
ν = 1 is used, i.e. Ru is a total variation (TV) regulariser [12]. In [6, 14] the functional
E(u) is rewritten using auxiliary quantities wx, wy into a so-called half-quadratic func-
tional, which is then minimised by an iterative procedure that alternates between up-
dating wx, wy by (nonlinear) shrinkage applied to the gradient components ux, uy , and
updating u by a linear filter step via the Fourier domain.

Robust regularised Richardson-Lucy deconvolution [16]. In [9] the authors pursued the
goal to introduce a robust data fidelity term F (f, u∗h) into the framework of [8]. In the
image estimation step they decided to use the so-called robust regularised Richardson-
Lucy deconvolution (RRRL) from [16] which has proven useful in several applications
of non-blind deconvolution [3, 11, 17].

RRRL is a fixed-point iteration for a functional (3) with the robust data fidelity term

F (f, u ∗ h) =
∫
Ω

Φ
(
%(f, u ∗ h)

)
dx , (8)

%(f, v) ≡ %RL(f, v) := v − f − f ln f
v
. (9)
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Note that unlike %quad from (6) that is related to Gaussian, Laplacean and similar sym-
metric additive noise types, the residual error measure %RL used here is related to Pois-
son noise and related types of noise. In (8) it is the argument to a penaliser function
Φ : R+

0 → R+
0 that is assumed to increase less than linear; [16] suggests Φ(z) =

√
z

or, with a numerical regularisation, Φ(z) = 4
√
z2 + ε. For the regulariser Ru for RRRL

different choices are possible, see [16], including the TV regulariser (7) with ν = 1,
or regularisers associated with Perona-Malik’s isotropic nonlinear diffusion [10]. In [9]
the TV regulariser is used, and we will follow this choice in the present paper.

3 Point-Spread Function Estimation

In this section we describe the estimation step for the PSF h in the alternating minimi-
sation scheme. This involves, first, the specification of the PSF regulariser according to
[8], and second, its minimisation in combination with a suitable data fidelity term.

For this section, we switch to a discrete setting because the formulation of the spec-
tral decomposition in [8] is done in the finite-dimensional matrix-algebraic setting. We
rewrite (4) in the discretised form

E(h) := F (f ,u ∗ h) + βRh(h) (10)

with discrete images f = (fi,j)i,j , u = (ui,j)i,j and a discrete PSF h = (hi,j)i,j .
The PSF regulariser Rh and data fidelity term F will be specified in the following
subsections.

3.1 Regulariser Based on Convolution Spectrum

Let us now recall the PSF regularisation approach from [8] which also underlies the
work in [9] and which will also be adopted in the present paper.

To this end, we start by noticing that, for any given image v, the convolution v ∗ h
defines a linear operator on point-spread functions h. For discrete h with a support
of size mx × my , it is suggested in [8] to embed it into a larger area sized sx × sy
with (sx, sy) ≈ 1.5 (mx,my); assuming nx × ny as size of the image v and adopting
the discrete convolution with zero-padding, we have the convolution operator Cv :
Rsx×sy → R(sx+nx−1)×(sy+ny−1), h 7→ v ∗h. Its singular value decomposition yields
sxsy singular values σk(v) whose right singular vectors can be identified with singular
discrete kernels hk(v). Following the terminology of [8], one calls σk(v) and hk(v)
the convolution eigenvalues and convolution eigenvectors of v.

The core observation of [8], underpinned by theoretical analysis in that source, is
that convolution eigenvalues of blurred images v = u ∗ h tend to be substantially
smaller than those of the underlying sharp images v = u. In particular, the convolu-
tion eigenvectors belonging to the few smallest convolution eigenvalues σk(u ∗ h) are
approximately orthogonal to h under the inner product given by convolution. In other
words, ‖hk(u ∗ h) ∗ h‖ ≈ 0 holds for those k for which σk(u ∗ h) ≈ 0.

Since the convolution spectrum needs only to be computed for the blurred image, a
hard regularisation approach to estimate the convolution kernel h behind the blurred im-
age f = g ∗h could use orthogonality of h with a suitable set of convolution eigenvec-
tors for f directly. However, this would require a rule (such as a threshold on σk(f)) to
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determine the number of convolution eigenvectors to be used. This difficulty is avoided
in [8] by using instead a soft constraint with the penaliser

∑sxsy
k=1 ‖hk(f)∗h‖2/σk(f)2;

the weighting by inverse squared convolution eigenvalues makes the convolution eigen-
vectors for small convolution eigenvalues dominant in the penalisation without the need
for a threshold parameter.

As a refinement to this procedure, the image f can be preprocessed by a suitable
linear filter operator L. Whereas the general principle of convolution orthogonality re-
mains valid due to the commutativity between L and the linear convolution operator,
such a modification allows to re-weight the influence of different regions of the image f
on the estimation of h. Following [8], we choose L as a Laplacean-of-Gaussian (LoG);
this correlates with the established fact that the information in near-edge regions of a
blurred image is of particular value in blur estimation, compare [19] and other works
on blur estimation that exploit this property. The resulting regulariser then reads as [8]

Rh(h) =

sxsy∑
k=1

‖hk(L(f)) ∗ h‖2

σk(L(f))2
(11)

with the LoG operator L. Note that h enters (11) with dimensions sx × sy; the actual
minimisation, however, will be constrained to h supported on an mx ×my patch.

Minimisation of the regulariserRh alone could be used to estimate h for subsequent
non-blind deconvolution, but in this case no regularisation on u enters the estimation of
h. Indeed, [8] states that such an approach tends to result in over-sharpened images with
visible artifacts. One should therefore embed Rh into a joint functional such as (2) with
alternating minimisation for u and h. To this end,Rh(h) is rewritten as a quadratic form
acting on kernels h = (hi,j)i,j of size mx ×my , Rh(h) =

∑
i,j,i′,j′ Hi,j;i′,j′hi,jhi′,j′

where the coefficient matrix H = (Hi,j;i′,j′)i,j;i′,j′ is the Hessian

H =

sxsy∑
k=1

Chk(L(f))
mx,my

T
Chk(L(f))
mx,my

σk(L(f))2
(12)

which can be pre-computed once for all iterations.

3.2 Robust Data Term in PSF Estimation

In [8] the regulariser (11) written with the Hessian (12) is combined with a quadratic
data fidelity term to give a quadratic minimisation problem for h. In discrete form, the
quadratic data fidelity term (compare (5), (6)) reads

F (f ,u ∗ h) =
∑
i,j

%(fi,j , vi,j) (13)

where % ≡ %quad is given by (6), and vi,j by

v = (vi,j)i,j := u ∗ h . (14)
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The minimality condition of the discrete functional E(h) = F (f ,u ∗ h) + βRh(h)
composed of (13) and (11) with (12) is a linear equation system for the entries of h,∑

i,j

(Sp,q;i,j + βHp,q;i,j)hi,j = Tp,q , for all pixels (p, q), with (15)

Sp,q;i,j =
∑
r,s

ur−i,s−jur−p,s−q , Tp,q =
∑
r,s

fr,sur−p,s−q . (16)

This system, which is densely populated, due to Rh, can be solved by standard meth-
ods. Since (15) has a high condition number in some cases, regularisation by adding a
multiple of the unit matrix to its coefficient matrix may be used for stabilisation.

Robust data term from [9]. In [9] the quadratic data fidelity term F in the PSF estima-
tion step was replaced with a robust data fidelity term [1, 21]

F (f ,u ∗ h) =
∑
i,j

Φ
(
%(fi,j , vi,j)

)
(17)

where vi,j and % ≡ %quad are given by (14), (6), and Φ(z) is a penaliser function
growing less than z. The L1 penaliser Φ(z2) = 2 |z| (or its regularised version Φ(z2) =
2
√
z2 + ε ) is a standard choice here. The minimality condition for the so obtained non-

quadratic minimisation problem is a non-linear equation system. Abbreviating

ϕr,s := Φ′
(
%(fi,j , vi,j)

)
, (18)

the minimality condition system can again be written in the form (15) but

Sp,q;i,j =
∑
r,s

ϕr,sur−i,s−jur−p,s−q , Tp,q =
∑
r,s

ϕr,sfr,sur−p,s−q (19)

now depend on hi,j viaϕr,s. Using this representation, [9] solved the system by iterative
linearisation: Given some initial h0, one computes for l = 0, 1, . . . the coefficients
Sp,q;i,j and Tp,q from hl and then solves (15) with fixed coefficients to obtain hl+1.
After solving the nonlinear equation system, a sparsification step is used to eliminate
negative as well as small positive PSF entries; following [9], values below 0.1 times the
95%-quantile of PSF entries are set to zero.

The practical viability of this approach has been documented in [9] where experi-
ments showed slight improvements over the method from [8]. However, from a theoreti-
cal viewpoint the combination of the L1 fidelity term based on (6) in the PSF estimation
with the one based on (9) in the image estimation breaks the unified model (2) and can
only be considered as pragmatic approximation of a proper alternating minimisation of
a joint energy functional, which is also righteously pointed out in the conclusion of [9].

Asymmetric robust data term. To address this inconsistency in the method of [9], we
combine the regulariser (11) with the a discretised version of the data fidelity term (8),
(9), i.e. (17) with % ≡ %RL as given by (9). As penaliser function Φ we will use in
experiments Φ(z) =

√
z or an approximation thereof.
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From (17), (9), (14) we compute

∂

∂hp,q
F = 2

∑
i,j

Φ′
(
%(fi,j , vi,j)

)∂%(fi,j , vi,j)
∂vi,j

∂vi,j
∂hp.q

= 2
∑
i,j

Φ′
(
%(fi,j , vi,j)

)(
1− fi,j

vi,j

)
ui−p,j−q

= −
∑
i,j

2Φ′
(
%(fi,j , vi,j)

)
vi,j

(fi,j − vi,j)ui−p,j−q . (20)

For the joint functional E(h) = F + βRh, we obtain therefore the minimality condi-
tions as a nonlinear equation system in the same form (15), (19) as before but with

ϕr,s :=
2Φ′

(
%(fi,j , vi,j)

)
vi,j

(21)

instead of (18). This equation system can again be solved by iterative linearisation.

4 Multi-Channel Images

Given a blurred multi-channel (such as RGB colour) image f = (f c)c∈Γ with the
channel index set Γ , it is in most cases appropriate to assume equal blur in all channels,
such that one seeks a multi-channel image u and a single-channel PSF h that minimise

E(u, h) = F (f ,u ∗ h) + αRu(u) + βRh(h) , (22)

where the single-channel data fidelity term (8) with % from (6) or (9), and single-channel
image regulariserRu(u) = Ψ

(
|∇u|2

)
have been translated to the multi-channel setting

as

F (f ,u ∗ h) = Φ

(∑
c∈Γ

%(f c, uc ∗ h)

)
, Ru(u) = Ψ

(∑
c∈Γ
|∇uc|2

)
. (23)

By analogous derivations as in the previous sections, one obtains from (23) multi-
channel minimisation methods that follow the general rule that nonlinearities are calcu-
lated by merging information from all channels, and are then applied uniformly in all
channels, whereas the linear operations act separately in each channel.

Image estimation step. To apply this to the half-quadratic methods from [6, 14], notice
first that they alternate between computing auxiliary quantities wx, wy by a (nonlinear)
shrinkage step applied to image gradients, and updating the image u in a linear step
via the Fourier domain. Consequently, wx, wy will turn into multi-channel counterparts
computed by a joint multi-dimensional shrinkage operation, whereas the Fourier step is
performed channelwise.

The multi-channel version of RRRL is found in [15]; in our setting it reads as

(
uc
)k+1

=
h∗ ∗

(
Φ′
(∑

d %(f
d, vd)

)
fc

vc

)
+ α

[
div
(
Ψ ′
(∑

d|∇ud|2
)
∇uc

)]
+

h∗ ∗ Φ′
(∑

d %(f
d, vd)

)
− α [div (Ψ ′ (

∑
d|∇ud|2) ∇uc)]−

(24)

where indices c and d refer to channels, and pixel indices i, j have been omitted.
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PSF estimation step. In the estimation of h, operators Cv now map to a space of |Γ |
times as many dimensions than before but their convolution spectra remain to be of size
sxsy , leaving the further computation of the Hessian (12) unchanged. In the equation
systems of Section 3.2, the computation of the coefficients (16), (19) not involves a
summation over channels, such as

Sp,q;i,j =
∑
r,s

∑
c∈Γ

ϕcr,su
c
r−i,s−ju

c
r−p,s−q , Tp,q =

∑
r,s

∑
c∈Γ

ϕcr,sf
c
r,su

c
r−p,s−q . (25)

The nonlinearities ϕr,s require summation over channels in the argument of Φ, such
that, for the symmetric penalisers, (18) becomes uniformly for all channels

ϕcr,s ≡ ϕr,s = Φ′

(∑
d∈Γ

%(fdi,j , v
d
i,j)

)
, % ≡ %quad as in (6), (26)

whereas, for the asymmetric penalisers, (21) turns into

ϕcr,s =
2Φ′

(∑
d∈Γ %(f

d
i,j , v

d
i,j)
)

vci,j
, % ≡ %RL as in (9). (27)

5 Experiments

We begin by experiments on synthetic images, which allow a direct comparison of re-
constructed images and PSFs with the ground truth, i.e. the original sharp image and
the PSF used for its degradation. Unfortunately, quantitative measurements of PSNR or
SSIM as are common for non-blind deconvolution evaluations face a difficulty in the
case of blind deconvolution: As the convolution u ∗ h is invariant under opposite trans-
lations of u and h, reconstructions shifted by non-integer displacements must be treated
as equally valid. In papers that do PSNR or SSIM measurements on blind deconvolution
results, see [5, 13], some alignment between ground truth and reconstructed images is
used to compensate for such shifts; however, no discussion is provided on how the inter-
polation involved in alignment influences the error measures. Preliminary tests indicate
that already different direction of alignment (ground truth to reconstructed image, or
vice versa?) can change PSNR by more than the PSNR differences reported for differ-
ent methods. We believe therefore that further work is needed to put error measurements
for blind deconvolution on more solid grounds. As we cannot solve this problem within
the present contribution, we restrict ourselves to visual assessments here.

Figure 1(a) shows a test image from which a blurred version, Figure 1(b), was gener-
ated with the PSF shown in frame (g). Frames (c–f) show results of blind deconvolution
with different method settings for the image and PSF estimation steps, with the corre-
sponding reconstructed PSFs in (h–k). To ensure closeness of the results to the steady
state, 300 iterations of the alternating minimisation were performed. The standard de-
viation in the LoG for computing the Hessian (12) was set to 2. Regularisation weights
were α = 0.1, β = 106 for frame (c), α = 0.003, β = 104 for (d), α = 0.003, β = 104

for (e), and α = 0.003, β = 3000 for (f). The number of RRRL iterations in the image
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a b

c d e f

g
h i j k

Fig. 1. (a) Test image, 128 × 128 pixels. (Clipped, downscaled and converted to
greyscale from a photograph of the building of TU Vienna, Source of original image:
https://upload.wikimedia.org/wikipedia/commons/e/e9/TU Bibl 01 DSC1099w.jpg, Author: Pe-
ter Haas. Available under licence CC BY-SA 3.0.) – (b) Blurred by the PSF shown in frame (g).
– (c) Deblurred using the method from [8]. – (d) Deblurred using the PSF estimation from [8]
with image estimation by RRRL [16]. – (e) Deblurred using the robust PSF estimation from [9]
with image estimation by RRRL. – (f) Deblurred using robust PSF estimation with asymmetric
penalisation (8), (9). – (g) PSF (8× 8 pixels) used to generate image (b), 2.85 times enlarged. –
(h–k) PSFs (13× 13 pixels each) reconstructed with the images (c–f), 2.85 times enlarged.

estimation of (d, e, f) was set to 300. In (e) and (f) 10 linearisation iterations were used
in the PSF estimation step.

The sharpened images in Figure 1(c–f) demonstrate that the original method from
[8], (c), as well as its robustified variants from [9], (e) and the present paper, (f), achieve
reasonable sharpening, with a slight advantage for the robustified methods (e, f). The
combination of robust image estimation with the non-robust PSF estimation from [8] as
shown in frame (d) shows no clear advantage, which is no surprise as the combination
of a non-robust and robust data fidelity term is even a more blatant mismatch than that
of two robust data terms in frame (e). Among the two robust methods (e), (f) there is no
clear visual preference. The reconstructed PSFs (h–k) complement these findings. The
robust methods yield visually the best matches (j, k) to the ground truth (g). The method
from [8] yields an acceptable estimate (h), whereas the estimate (i) from the half-robust
approach appears to be the farthest off.

In Figure 2(a), the blurred image from Figure 1(b) was further degraded by Gaus-
sian noise. For this image, a non-blind RRRL deconvolution result (α = 0.01, 300
iterations) using the ground-truth PSF is shown in Figure 2(b). Frames (c–f, h–k) show
blind deconvolution results with the same methods as in Figure 1. Here, 300 iterations of
the alternating minimisation were used (no visible changes after about 150 iterations).
The standard deviation in the LoG was increased to 5 for frames (c, d, e). Regularisation



10 Martin Welk

a b

c d e f

g
h i j k

Fig. 2. (a) Blurred test image from Fig. 1(b) degraded by Gaussian noise with standard deviation
10. – (b) Non-blind RRRL deconvolution of (a) using PSF (g). – (c) Blind deconvolution using
the method from [8]. – (d) Deblurred using the PSF estimation from [8] with image estimation by
RRRL [16]. – (e) Deblurred using the robust PSF estimation from [9] with image estimation by
RRRL. – (f) Deblurred using robust PSF estimation with asymmetric penalisation (8), (9). – (g)
PSF (8 × 8 pixels) used to generate image (a), 2.85 times enlarged (same as Fig. 1(g)). – (h–k)
PSFs (13× 13 pixels each) reconstructed with the images (c–f), 2.85 times enlarged.

weights were α = 0.1, β = 3 ·107 in (c), α = 0.01, β = 108 in (d), α = 0.02, β = 105

in (e), α = 0.01, β = 106 in (f). The remaining parameters were chosen as in Figure 1.
As can be expected, the added noise in the input image reduces the quality of de-

convolution results significantly. However, it is evident that particularly the results of
the fully robust methods (e, f) suffer from less ringing artifacts and noise amplification
than the non-robust result (c). Among the reconstructed PSFs (h–k) the one obtained by
our proposed method (k) is visually the best match to the ground truth (g).

As a real-world example, Figure 3 presents tests on two RGB images (a, e) blurred
during acquisition. The PSF estimation from [8], [9] and our method (8), (9) are juxta-
posed, using RRRL with α = 0.002 and 300 iterations for image estimation in all cases.
500 iterations of the alternating minimisation were used. The PSF regularisation weight
β was set to 105 for [8], 300 for [9] and 1000 for our method. For the robust methods,
three linearisation iterations were used. Both robust methods yield some improvement
over [8]. From the second test image (e), some details seem to have been recovered
sharper by our method (h) than by the one from [9], see (g), whereas for the first test
image (a) the quality of both robust methods (c, d) is about the same.

6 Summary and Outlook

Based on the robust blind deconvolution approach from [9], we have presented an
improved model that uses the same data fidelity term for image and PSF estimation.
Our model represents a consistent minimisation procedure for a joint energy functional
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a b c d

e f g h
i j k l m n

Fig. 3. (a, e) Blurred photographs, 128 × 128 pixels each (Author: Gregor Peltri). – (b, f) De-
blurred using the PSF estimation from [8] and RRRL for image estimation. – (c, g) Deblurred
using the robust PSF estimation from [9] and RRRL. – (d, h) Deblurred using the robust PSF
estimation (8), (9) and RRRL. – (i–n) PSFs (31 × 31 pixels each, 1.93 times enlarged) for (b, f,
c, g, d, h), respectively.

which opens up the way for more detailed theoretical analysis in the future. We have
shown by experiments the viability of our method for synthetic and real-world exam-
ples, and the advantage of the robust approaches from [9] and the present paper over
their non-robust predecessor from [8] in deblurring input images with moderate noise.

From the two conflicting data fidelity terms in [9] we have favoured here the asym-
metric one that is related to Poisson-type noise. It remains a desiderate to come up with
a similar consistent model using symmetric robust data fidelity terms. This will require
further work on minimisation procedures, as the half-quadratic approach from [6, 14]
underlying the image estimation in [8] is difficult to adapt to a robust setting.

Whereas for most parameters of the method heuristics yield good results, see the
settings used in Section 5, further analysis of parameter selection, especially for the
regularisation weights, remains a topic of future work. The high computational cost
that is typical for blind deconvolution renders further effort on algorithmic optimisa-
tions worthwhile. As pointed out in Section 5, future work is also needed regarding
appropriate quantitative measures for blind deconvolution.
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