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Abstract. The median filter is one of the fundamental filters in image
processing. Its standard realisation relies on a rank ordering of given data
which is easy to perform if the given data are scalar values. However, the
generalisation of the median filter to multivariate data is a delicate issue.
One of the methods of potential interest for computing a multivariate
median is the convex-hull-stripping median from the statistics literature.
Its definition is of purely algorithmical nature, and it offers the advan-
tageous property of affine equivariance.
While it is a classic result that the standard median filter approximates
mean curvature motion, no corresponding assertion has been established
up to now for the convex-hull-stripping median. The aim of our paper
is to close this gap in the literature. In order to provide a theoretical
foundation for the convex-hull-stripping median of multivariate images,
we investigate its continuous-scale limit. It turns out that the resulting
evolution is described by the well-known partial differential equation of
affine curvature motion. Thus we have established in this paper a relation
between two important models from image processing and statistics. We
also present some experiments that support our theoretical findings.

Keywords: median filter, convex hull stripping, partial differential equations,
curve evolution

1 Introduction

The median filter as introduced by Tukey [18] is a cornerstone of modern image
processing, and it is used extensively in smoothing and denoising applications.
The concept of the classic median filter relies on a rank ordering of input data, so
that there exists a large range of algorithmic variations for realising its concept.
However, while the median filtering of grey-value images is straightforward in
terms of the natural total ordering of grey-value data within a filtering mask,
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an extension of the median concept to multivariate data such as for instance in
colour images is a delicate issue.

Generalisations of median filtering to multivariate data have been investi-
gated by statisticians for more than a century [9]. Several strategies have been
proposed and studied in the literature, see e.g. [16] for an useful overview. Let
us elaborate on the possible generalisations and related work in some detail.

Earliest among the concepts that are still used today is the L1 median that
goes back to Weber’s 1909 work in location theory [21] and was further studied,
among others, by Gini [6], Weiszfeld [22], Austin [2], and Vardi [20]. The median
value of scalar valued data may be considered as the minimiser of the sum of
distances (i.e. absolute differences) of a variable parameter from the given data
points [10]. The L1 median generalises this observation by defining the median of
data points in Rn as the location that minimises the sum of Euclidean distances
from the given points. Whereas this minimiser can be computed efficiently [20],
it lacks desirable invariance properties of the scalar-valued median. The scalar
median is equivariant with respect to arbitrary monotonic transformations of the
real line, meaning that the median operation µ : (R)+ → R and any monotonic
transformation τ : R → R commute, µ ◦ τ⊗ ≡ τ ◦ µ. Here, (R)+ denotes the
set of nonempty finite multisets of real numbers, and τ⊗ the element-by-element
application of τ to such a multiset. Let us note that this equivariance property is
of some interest in the image processing context as it makes the standard median
filter belong to the class of morphological filters. In contrast, the L1 median is
equivariant only with respect to the Euclidean and similarity groups.

As statisticians are often confronted with data from Rn that do not possess
a natural Euclidean structure – i.e. the data belong to the vector or affine space
Rn but not to a Euclidean space – , they have been interested since long time
in alternatives to the L1 median that would at least offer affine equivariance.
Several such concepts have been proposed, including Oja’s simplex median [11],
the transformation–retransformation L1 median [4, 12], the half-space median
[19] and the convex-hull-stripping median [3, 14]. The latter will be in the focus
of the present work.

Regarding the filtering of multivariate images, let us recall first that local
image filters combine a selection step that selects at each image location a certain
set of image values, with an aggregation step that computes from these values
the filtered value at that location. In the simplest case, the selection step uses a
sliding window so that an equally shaped neighbourhood is used at each location.
The standard median filter [18] then uses the scalar median as aggregation step.
In the case of a multivariate image, it is straightforward to combine the same
selection step with any multivariate median filter to obtain a filtered multivariate
image. Especially the L1 median has been used for this purpose in the last
decades, see [17, 26]. More recently, multivariate image median filters based on
the Oja as well as the transformation–retransformation L1 median have been
proposed [24].

Since images may be considered as discrete samplings of continuous-scale
functions, it is desirable that a discretely operating filtering procedure should be
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related to a continuous-scale model. This may also give additional insight into
important filtering properties, potential generalisations, or alternative implemen-
tations. For the scalar-valued median filter, such a connection was established by
Guichard and Morel [7, 8] who proved that in a continuous-scale limit, median
filtering of 2D images approximates the partial differential equation (PDE) of
mean curvature motion, a result which can straightforwardly be generalised to
higher-dimensional scalar-valued images. In the case of multivariate images, sim-
ilar PDE approximation results have been obtained in [25, 24] for the L1 median
and in [24] for the Oja and transformation–retransformation L1 median filter.
In order to embed also the convex-hull-stripping median into such a framework,
it is crucial to derive a continuous formulation of this originally entirely discrete
procedure. On this basis, space-continuous analysis of e.g. convex-hull-stripping
median filtering of multivariate images will be possible.

Our contribution. The goal of our paper is to go the aforementioned first step in a
continuous analysis of the convex-hull-stripping median, namely to equip it with
a continuous formulation. In order to provide a theoretical foundation for the fil-
tering of multivariate images by the convex-hull-stripping median, we investigate
the continuous-scale limit of this median filter. We describe the continuous-scale
counterpart of the discrete process defining the convex-hull-stripping median
of finite sets in R2 by a PDE evolution which turns out to be in essence the
well-known affine curvature motion [1, 13]. We show experiments using bivariate
images in R2 that support this finding.

Structure of the paper. The paper is organised in accordance to the outlined con-
tributions. After briefly recalling the algorithmical definition of the convex-hull-
stripping median, we investigate its continuous-scale limit. The most important
step, which forms the basis of all main results, is the proof of a technical lemma
that we present in detail. After that we provide some experiments along with
relevant remarks. The paper is finished by conclusive remarks.

2 Theory of Convex-Hull-Stripping Median Filtering

The convex-hull stripping median for multivariate data goes back to work by
Barnett and Seheult [3, 14]. After recalling its definition, we derive its continuous-
scale limit in the two-dimensional case and turn then to discuss its possible
application for the filtering of bivariate images.

2.1 The Convex-Hull-Stripping Median of Finite Sets

Considering a finite multiset of points in Rn (which means that points may
appear with multiplicities greater than one), its convex hull is a polygon. By
deleting all vertices of this polygon, a smaller multiset remains. This convex-
hull-stripping procedure is repeated until an empty set remains. The convex hull
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of the last non-empty multiset in the constructed sequence is defined as the
median of the initial multiset.

It is clear that the convex-hull-stripping median as defined above is in gen-
eral a multiset itself. A unique median point may be chosen by some additional
step like taking the centre of gravity. Later on, we will be interested in the
continuous-scale case which is theoretically obtained as the limit of infinitely
refined sampling from an assumed continuous density. In this situation the ad-
ditional step for uniqueness is no longer relevant.

As the convex hull of a data multiset is equivariant under arbitrary affine
transformations, it is clear that the convex-hull-stripping median, too, is affine
equivariant.

A caveat of the construction that should be noted is that the convex-hull-
stripping median of finite multisets does not always depend continuously on
the input data. This is inherent to the discrete procedure underlying its defini-
tion in which the vertex set of the convex hull is updated set-wise in discrete
algorithmic steps when point coordinates undergo continuous variations. The
high-dimensional space of input multisets contains therefore a network of dis-
continuity hypersurfaces. In particular, all multisets with coincident data points
(multiplicities greater than one) are candidates for discontinuities.

2.2 Continuous-Scale Limit

To best of our knowledge, the convex-hull-stripping median of a continuous-scale
density has not been investigated so far. We will do this for data in R2.

Unlike the L1 median or Oja median which are defined as minimisers of
some objective function in Rn, the convex-hull-stripping median is defined via an
iterative process. Therefore it is no surprise that, when translating this concept
to the situation of a continuous-scale density as input data, a time-continuous
dynamical process arises that is described best by a PDE. The general strategy
behind the following derivations is to apply the discrete convex-hull-stripping
process to stochastic samplings of a given continuous density. When the sampling
density is sent to infinity, the continuous process is approximated asymptotically
with probability one. In its derivation, the stochastic samplings can therefore be
studied in terms of expectation values. The main result of this paper reads as
follows.

Proposition 1. Let a piecewise smooth density γ : R2 → R with compact sup-
port Ω0 ⊂ R2 in the Euclidean plane R2 be given. Assume that the boundary of
Ω0 is regular, and γ is differentiable on Ω0. Let the point set X be a stochastic
sampling of this density with sampling density 1/h2, i.e., there is on average
one sampling point in an area in which the density integrates to h2. For h→ 0,
the convex-hull-stripping median of the set X asymptotically coincides with the
vanishing point of the curve evolution

ct(p, t) =

{
γ(c(p, t))−2/3κ(p, t)1/3n(p, t) , c(p, t) ∈ ∂ conv(c(·, t)) ,
0 else

(1)
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where c : [0, L] × [0, T ] → R2 is a curve evolution of closed curves with curve
parameter p ∈ [0, L] and evolution time t ∈ [0, T ], which is initialised at time
t = 0 with the boundary of the support set, c0 := ∂Ω0. Furthermore, κ(p, t)
denotes the curvature and n(p, t) the inward normal vector of c at (p, t). At any
time t, the evolution acts only on the part of c that is on the boundary ∂ convc
of the convex hull of c.

Remark 1. For a convex shape Ω0 with uniform density γ ≡ 1 on Ω0, the evolu-
tion reduces to the well-known affine (mean) curvature motion PDE ct = κ1/3n
which is known to reduce any closed regular initial curve to a single point in
finite time. We call this point the vanishing point of the evolution. The more
general equation (1) accounts for non-uniform density by the factor 1/γ2/3, and
restricts the evolution to convex segments of the boundary.

The proof of this proposition relies essentially on the following lemma.

Lemma 1. Let a uniform density γ ≡ 1 within the disc D% of radius % with
center O = (0, 0) in the Euclidean plane R2 be given. Let the point set X be
a stochastic sampling of this density with sampling density 1/h2, i.e., there is
on average one sampling point per area h2. For h → 0, one step of convex hull
stripping of the set X then asymptotically approximates a shrinkage of the disc
by C%−1/3h4/3 with a positive constant C that does not depend on % and h.

Proof. Assume first that a uniform density γ ≡ 1 within some shape Ω ⊂ R2 is
stochastically sampled with sampling density 1/h2. Then the number of sample
points within an area of measure a is for a→ 0 asymptotically a/h2. Thus, the
probability that no sampling point is found in an area of measure A amounts to

lim
a→0

(
1− a

h2

)A/a
= e−A/h

2

. (2)

Consider now specifically the case Ω = D% as specified in the hypothesis of
the lemma. Let P be any point on the boundary circle ∂Ω. We seek the next
sampling point in positive orientation near ∂Ω that is a vertex of the convex hull
of the sample points, i.e., a sample point Q such that ∠QPO ∈ [0, π/2] (angles
being measured in positive orientation) for which there is no sample point R
with 0 < ∠POR < ∠POQ for which the segments OR and PQ intersect.

For a small angle α > 0 denote by Pα the point on the circle ∂Ω with
∠POPα = α. Consider the circle segment Aα of ∂Ω enclosed between the chord

PPα and the arc
_
PPα. Then the probability that no sample point is found in Aα

is exp(−|Aα|/h2) where |Aα| denotes the area measure of Aα. For small α > 0
one has

|Aα| =
1

2
%2α− 1

2
%2 sinα =

1

12
%2α3 +O(α4) . (3)

Let αQ denote the value of α for which the line PPα goes through the sought
point Q. Using (3), the probability for αQ to be at least α is approximately
exp(−%2α3/(12h2)). Therefore the probability density p(α) of αQ is given by

p(α) = − d

dα
e−%

2α3/(12h2) =
%2α2

4h2
e−%

2α3/(12h2) . (4)
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Using integration by parts, the expectation value of αQ is

E(α) =

∫ ∞
0

αp(α) dα =

∫ ∞
0

α · %
2α2

4h2
e−%

2α3/(12h2) dα

=
[
−αe−%

2α3/(12h2)
]∞
0︸ ︷︷ ︸

(a)

+

∫ ∞
0

e−%
2α3/(12h2) dα︸ ︷︷ ︸
(b)

=

∫ ∞
0

e−%
2α3/(12h2) dα = 3

√
12h2

%2
Γ

(
4

3

)
(5)

where part (a) was found to be zero, and part (b) has been evaluated using the
integral

∫∞
0

exp(−z3) dz = Γ (1/3)/3 = Γ (4/3), where Γ denotes the Gamma
function. As the angle β := ∠POQ is on average proportional to αQ with some
constant factor, its expectation value, too, satisfies

E(β) ∼ %−2/3h2/3 . (6)

As a consequence, the vertex count K of the convex hull of the sampling points
has the expectation value

E(K)
.
=

2π

E(β)
= 2π C

%2/3

h2/3
(7)

with some positive constant C, where
.
= denotes equality up to higher order

terms.
Stripping the convex hull from X corresponds to some inward movement of

the contour of Ω so that the reduced shape Ω̃ is sampled by the remaining
point set X̃ . Due to the given sampling density the area of X \ X̃ has the
expectation value E(K)h2. For rotational symmetry, the inward movement shall
be in expectation equal along the periphery of Ω, such that Ω̃ approximates a
disc with smaller radius %̃ whose area π%̃2 has the expectation value π%2 −
2π C%2/3h4/3. From this one calculates that the expectation value of % − %̃ is
asymptotically equal to C%−1/3h4/3. Let us remark that h → 0 is employed to
this end so that in the limit %̃ approaches %, while the factor h4/3 shows how
fast this works with h→ 0. This concludes the proof. �

We can now turn to prove our main result.

Proof (of Proposition 1). Whereas the argument in the proof of Lemma 1 is
written for the entire disc, the process of convex hull stripping acts strictly
locally on the convex boundary of the disc D%. The result is therefore valid
for each infinitesimal convex portion of a compact support set Ω of a uniform
density if one inserts for % the radius of the osculating circle, i.e. 1/κ. Next,
a non-uniform density corresponds to a modification of the sampling density
parameter h by a factor 1/

√
γ at each location. Finally, the evolution cannot

take effect in portions of the boundary curve that do not belong to the convex
hull of Ω.
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The convex-hull-stripping median of X is obtained by iterative application
of the procedure described in the lemma. It is therefore clear that the vanishing
point of the curve evolution (1) is the sought median. �

Prop. 1 formulated a curve evolution that starts with the possibly non-convex
boundary curve of Ω0, the support set of γ. As a consequence, the curve evolution
in Prop. 1 consists of affine curvature motion and stationary behaviour, and the
switching between the two depends on a non-local criterion (namely, whether
the evolving curve point is on the convex hull boundary). As this criterion is
difficult to evaluate within the context of a PDE discretisation, we reformulate
the result in the following by starting the evolution with a convex curve enclosing
the support set Ω.

However, when doing so, the curve evolution partially takes place outside Ω.
There one has γ ≡ 0, so that this would lead to infinite speed of the evolution
due to the factor 1/γ2/3. Therefore a regularisation is introduced.

Corollary 1. Let the density γ with support Ω0, and the sampled point set X
with sampling density 1/h2 be given as in Proposition 1. Let Ω̃0 ⊇ Ω0 be a convex
compact set with regular boundary. For ε > 0, define a piecewise smooth density
γε on Ω̃0 by γε(x) = γ(x) for x ∈ Ω0, γε(x) = ε for x ∈ Ω̃0 \Ω0.

For h → 0, the convex-hull-stripping median of the set X asymptotically
coincides with the limit for ε→ 0 of the vanishing point of the curve evolution

c̃t(p, t) = γε(c̃(p, t))
−2/3κ(p, t)1/3nc̃(p, t) (8)

where c̃ is initialised at t = 0 with the convex closed curve ∂Ω̃0.

Remark 2. Practically it is sufficient to numerically compute the vanishing point
with a sufficient small ε. Still, a numerical implementation must take care of the
large difference in the evolution speed of (8) between the regions within and
outside Ω0.

Proof (of Corollary 1). In the limit ε→ 0, the evolution (8) will move the initial
contour to the convex hull of Ω0 within time O(ε), after which the evolution
continues evolving this convex hull boundary, mimicking (1) for the coincident
curve segments of c̃ and c and keeping the remaining segments of c̃ spanned as
straight lines connecting the coincident segments. �

3 Experiments

In this section we present experiments for the median filtering of bivariate images
by the convex-hull-stripping median and the median obtained from the affine
curvature flow. We emphasise that these experiments are driven by theoretical
interest. As median filtering of (univariate as well as multivariate) images has
been studied in many earlier works, we consider the application of the convex-
hull-stripping median and its PDE counterpart in the context of an image filter
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as a good way to illustrate the asymptotic equivalence of both procedures as
established in Proposition 1.

Besides the limited practical interest of bivariate images, we do not advocate
these filters for applications at the time being because of their high computa-
tional expense. The computation of the discrete convex-hull-stripping median is
already significantly slower than that of other multivariate median filters. The
computation of medians by evaluating a PDE in the data space for each single
pixel is computationally so expensive that it is presently only interesting from
the theoretical viewpoint.

Discrete convex-hull-stripping median. At first glance, applying the convex-hull-
stripping median as a local filter for discrete multivariate images appears to
be a straightforward procedure. Shifting a sliding window across the image,
one collects for each image pixel the values (points in the data space Rn) of
the neighbouring pixels within the window, then computes their convex-hull-
stripping median and assigns it as the filtered data value to the given pixel.

However, the inherent discontinuity of the discrete convex-hull-stripping pro-
cess renders the results of this procedure highly instable, since in typical digital
images the selection process frequently yields multisets with coincident data
points, which are often discontinuity locations in the input data space. Consid-
ering digital images as quantised samplings from continuous functions, it is clear
that the high prevalence of coincident data points is actually an artifact of the
quantisation, and should be countered by a suitable regularisation. To this end
we use a stochastic perturbation approach that efficiently removes multiplicities
from the data sets: Each selected data point u ∈ Rn is replaced with a fixed
number p of data points ũi = u + νi where the νi are i.i.d. random perturba-
tions with Gaussian distribution of a fixed small standard deviation σ. In our
experiments on colour images with intensity range [0, 255], we use σ = 2 and an
augmentation factor p = 5. The convex-hull-stripping median is then computed
from the perturbed and augmented data set at each pixel.

With this procedure, convex-hull-stripping median filter results can be com-
puted for bivariate images. Figure 1 a shows an RGB test image from which we
create a bivariate image by averaging the red and green channels into a yel-
low channel, see Frame b. Frames d and e show the result of one and three
iterations, resp., of a median filter where the sliding window around each pixel
included its neighbours up to Euclidean distance 2 (thus, a 13-neighbourhood),
and reflecting boundary conditions were used. Frame f shows the result of a sin-
gle median filtering step with a larger sliding window that includes neighbours
up to Euclidean distance 5 (altogether, 81 pixels). It is evident that the convex-
hull-stripping median filter behaves similar to the scalar-valued median filter as
it smoothes small image details, preserves edges and rounds corners. This is also
in agreement with the observations in [23] for L1 and Oja simplex median fil-
tering of bivariate images; because of space limitations, we refrain from showing
the (largely similar) results of these other median filters for our bivariate test
image.
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a b c

d e f

g h i

Fig. 1. Image filtering by convex-hull-stripping median and affine-curvature-flow me-
dian. a RGB image baboon, 512×512 pixels. – b Bivariate (yellow–blue) image obtained
from a by averaging red and green channel. – c One iteration of convex-hull-stripping
median filtering of the RGB image using a sliding window of radius 5. – d–f Convex-
hull-stripping median filtering of the bivariate image: d Window radius 2, one iteration.
– e Window radius 2, three iterations. – f Window radius 5, one iteration. – g–i Me-
dian filtering using affine curvature flow: g Window radius 2, one iteration. – h Window
radius 2, three iterations. – i Window radius 5, one iteration.

Whereas the implementation can easily be adapted to three-channel images,
results are less favourable in this case. To demonstrate this, we show one result
of convex-hull-stripping median filtering of the original RGB test image. As can
be seen, the resulting image, shown in Figure 1 c, is much more blurred than
the bivariate result in frame f which was obtained with the same sliding window
and the same perturbation and augmentation parameters. This is mainly due
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a b c d e

f g h i j

Fig. 2. Affine curvature flow for a set of bivariate data points. Blue: data points,
light blue: smooth positive density (sum of Gaussians centred at data points), red:
evolving contour (zero level-set of level-set function), black: current minimum of level-
set function. a Initialisation with convex contour outside the bounding box of the
data points. – b–i Intermediate states of progressing level-set evolution, shown every
2000 time steps (with adaptive step-size control). – j Final state (after approx. 17 600
iterations) when level-set function becomes entirely positive. The minimum of the level-
set function defines the median.

to the fact that the data values in any local patch of a planar three-channel
image tend to cluster around a hyperplane in the three-dimensional data space.
Repeated deletion of the convex hull will therefore yield as the last non-empty
set still a fairly extended point cloud near the hyperplane, from which then
the average is computed. Thus, the result resembles much more a mean-value
filter than a median filter. Similar problems occur also with other multivariate
median filters for images where the dimension of the data space exceeds that
of the image domain, see the discussion in [24]. To forge a sensible median
filter for such images from the convex-hull-stripping approach therefore requires
additional research which is beyond the scope of the present paper.

Affine curvature flow median. To turn the PDE (8) into a median filter for
bivariate images, it must be evaluated for each pixel. Moreover, the discrete set
of data points obtained by the sliding-window selection needs to be turned into
a smooth density γ. We do this by defining γ as sum of Gaussians with fixed
standard deviation σ centred at the data points (for compact support, a cut-off
is set sufficiently far outside the bounding box of the data points). Matching the
perturbation procedure that was used in the convex-hull-stripping median filter
above, we choose σ = 2 for our experiments.

Discretising the data space by a regular grid and initialising a convex contour
encircling all data points, we compute (8) by a level-set method [15], using an
explicit discretisation with upwinding and an adaptive step-size control ensur-
ing a CFL-type condition. Spatial gradients in the denominator of the curvature
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expression are regularised by a small summand ∼10−6. Figure 2 shows an ex-
emplary evolution for the data set of a single pixel.

Figure 1 g–i show results for the full bivariate test image. Visual comparison
with the discrete convex-hull-stripping median results in frame d–f confirms the
largely similar smoothing behaviour. In a few pixels the computation suffered
from inaccuracies introduced by the rather simple way of regularising the cur-
vature expression, creating somewhat rigged edge structures. Refined numerics
is needed to fix these problems.

As mentioned before, the per-pixel PDE evaluation comes at a high compu-
tational cost. With a parallel CUDA implementation on a powerful graphics card
workstation, the computation of Figure 1 g–i took several days. Even with possi-
ble speed-up by narrow-band schemes, more advanced time-stepping and careful
parameter tuning, a direct PDE evaluation as shown here remains prohibitive
for practical applications.

4 Summary and Conclusions

We have validated theoretically that the convex-hull-stripping median approxi-
mates the PDE of affine curvature motion. Thus we have established a relation
between two previously unconnected, important models from the literature, and
at the same time we have bridged a gap between discrete and continuous-scale
modelling. Let us also point out that our work implies that the convex-hull-
stripping algorithm represents a non-standard discretisation of affine curvature
motion. We conjecture that this may be an interesting aspect for future work.

As indicated, an efficient implementation of the convex-hull-stripping median
is not trivial and a potential subject of future work, as might be its implemen-
tation within adaptive filtering methods. Let us also note that the multivariate
L1 median as a minimiser of a sum of Euclidean distances can be generalised to
data on Riemannian manifolds [5]. In future work we plan to make use of the
connection established in this paper to generalise convex-hull-stripping median
filtering to data on Riemannian manifolds.
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and related local filters for tensor-valued images. Signal Processing 87, 291–308
(2007)


