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Eduard-Wallnöfer-Zentrum 1, 6060 Hall/Tyrol, Austria
martin.welk@umit.at

2 Mathematical Image Analysis Group, Campus E1.7
Saarland University, 66041 Saarbrücken, Germany

weickert@mia.uni-saarland.de

c©Springer International Publishing Switzerland 2019.
In J. Lellmann, M. Burger, J. Modersitzki (eds.), Scale Space and Variational Methods in Computer Vi-
sion. Lecture Notes in Computer Science, vol. 11603, pp. 236–248, Springer, Cham 2019. — The final
publication is available at link.springer.com .

Abstract. Local M-smoothers constitute an interesting and important class of
image processing techniques with many connections to other methods. In our pa-
per we derive a family of partial differential equations (PDEs) that result as limit-
ing processes from M-smoothers which are based on local order-p means within
a disc the radius of which tends to zero. The order p may take any nonzero value
> −1. Thus, we also allow negative values which have never been considered
before. In contrast to results from the literature, we show in the space-continuous
case that mode filtering does not arise for p→ 0, but for p→ −1. Extending our
filter class to p-values smaller than −1 allows to include e.g. the classical image
sharpening flow of Gabor. Since our PDE class is highly anisotropic and may
contain backward parabolic operators, designing adequate numerical methods is
difficult. We present an L∞-stable explicit finite difference scheme that satisfies
a discrete maximum–minimum principle, is fairly efficient, and offers excellent
rotation invariance. Although it solves parabolic PDEs, it makes consequent use
of stabilisation concepts from the numerics of hyperbolic PDEs. Our experiments
show that the PDEs for p < 1 are of specific interest: Their backward parabolic
term creates favourable sharpening properties, while they appear to maintain the
strong shape simplification properties of mean curvature motion.

Keywords: M-smoother · partial differential equation · mode filter · backward
parabolic operator · anisotropy · finite difference methods · shape analysis

1 Introduction

M-estimators. It has been observed long ago by Legendre [15] and Gauß [8] that the
mean of a finite multiset X = {a1, a2, . . . , an} of real numbers can be described as the
minimiser of the sum of squared distances to the given numbers:

mean(X ) = argmin
µ∈R

∑n

i=1
(µ− ai)2 . (1)
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Likewise it has been noted by Jackson [13] that the median of X minimises the sum of
absolute distances:

median(X ) = argmin
µ∈R

∑n

i=1
|µ− ai| . (2)

This can be generalised to the notion of order-p means given by

meanp(X ) := argmin
µ∈R

∑n

i=1
|µ− ai|p (3)

for any p > 0, with mean2 ≡ mean, mean1 ≡ median. This concept is introduced by
Jackson [13] for p > 1 (as a means to disambiguate the median by p → 1+) whereas
Barral Souto [2] is interested in the order-p means in their own right for general p > 0.
In robust statistics, order-p means belong to the class of M-estimators [12].

Including the limiting case of the monomials as |z|0 = 0 for z = 0, and 1 otherwise,
[2] also extends the definition (3) to the case p = 0 for which the mode of X , i.e. its
most frequent value, is obtained. As also noted in [2], the limit p → ∞ yields what is
also called the mid-range value, i.e. the arithmetic mean of the extremal values of X .

It is straightforward to rewrite the definition of order-p means for continuous distri-
butions (densities) on R just by replacing sums with integrals: Let γ : R → R+

0 be a
density (integrable in a suitable sense), then one defines

meanp(γ) := argmin
µ∈R

∫ ∞
−∞

γ(z)|µ− z|p dz . (4)

This notion of continuous order-p means has been considered by Fréchet [6] for p > 1.

M-smoothers. In image processing, M-estimators are commonly used to build local
image filters, see [22] for the median filter (in signal processing) and [21] for order-p
means with p > 0. In a local filter, one takes at each location the greyvalues from a
neighbourhood (selection step) and computes some common value of these (aggrega-
tion step) that is assigned to the location in the filtered signal, see e.g. [5, 9]. These
filters can be iterated to generate a series of progressively processed images.

It has been noticed since long that these filters behave similar to certain image filters
based on partial differential equations (PDEs). Mean filters are a spatial discretisation
of linear diffusion. As proven in [11], iterated median filtering approximates mean cur-
vature motion [1]. In [9], also the case of the mode filter (associated with p = 0) is
considered.

Our contribution. We derive a family of PDEs associated with M-smoothers based on
order-p means with variable p and vanishing disc radius. In contrast to results from the
literature, we also permit negative p-values with p > −1. Reconsidering the relation of
order-p means and their corresponding PDEs to existing image filters, we show that in
the space-continuous setting the mode filter does not arise for p → 0, as is commonly
assumed [9], but for p → −1. Extending our PDE family to values p < −1 allows to
cover also the sharpening Gabor flow [7, 16], for which no M-smoothing counterpart
is known. In spite of the fact that our PDE family is anisotropic and may even involve
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backward parabolic operators, we design an L∞-stable numerical scheme with very
good rotation invariance. Our experiments show that the PDEs for p < 1 are particularly
attractive since they simultaneously allow image sharpening and shape simplification.

Structure of the paper. In Section 2 we present our theory that allows us to derive
PDE evolutions from M-smoothers. Our numerical algorithm is discussed in Section 3,
and Section 4 is devoted to an experimental evaluation. Our paper is concluded with a
summary in Section 5.

2 M-Smoothers, Mode and Partial Differential Equations

In this section, we derive PDEs for M-smoothers and the mode filter.

Generalised order-pmeans. In the following, M-smoothers are based on order-pmeans
with p > −1, p 6= 0. As this range for p goes beyond the usual p > 0, let us first extend
the definition of order-p means of continuous-scale distributions accordingly.

Definition 1. Let z be a real random variable with the bounded, piecewise continuous
density γ : R→ R. For p ∈ (−1,+∞) \ {0}, define the order-p mean of γ as

meanp(γ) = argmin
µ∈R

∫
R

γ(z) sgn(p)|µ− z|p dz . (5)

As |z|p is monotonically increasing on R+
0 for p > 0, but monotonically decreasing

on R+ for p < 0, the sgn(p) factor in (5) ensures that in both cases an increasing penalty
function is used.

For p > 0 the requirement of continuity of γ in Def. 1 can be relaxed; by modelling
a discrete density as a weighted sum of delta peaks, the discrete order-p means as in [2]
can be included in this definition.

The continuity is, however, essential for p < 0: In this case, the penalty function
has a pole at z = 0 such that an improper integral is obtained; for p > −1 this integral
exists provided that γ is continuous, i.e. no delta peaks are allowed. In particular, we
cannot define an order-pmean with−1 < p < 0 for discrete distributions as considered
in [2].

PDE approximation results. The proofs of the following propositions are given at the
end of this section. The first proposition contains our first main result.

Proposition 1. Let a smooth image u : R2 → R be given, and let x0 = (x0, y0) be
a regular point, |∇u(x0)| > 0. One step of order-p mean filtering of u with a disc-
shaped window D%(x) and p > −1, p 6= 0 approximates for % → 0 a time step of size
τ = %2/(2p+ 4) of an explicit time discretisation of the PDE

ut = uξξ + (p− 1)uηη (6)
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where η and ξ are geometric coordinates referring at each image location to the direc-
tion of the positive gradient, and the level-line direction, respectively:

meanp{u(x, y) | (x, y) ∈ D%(x0, y0)} − u(x0, y0)

=
%2

2(p+ 2)

(
uξξ(x0, y0) + (p− 1)uηη(x0, y0)

)
+O(%(min{p,0}+5)/2) . (7)

At a local minimum (maximum) of u, i.e. x0 with |∇u(x0)| = 0 where the Hessian
D2u(x0) is positive (negative) semidefinite, the same filtering step fulfils for % → 0
the inequality meanp{u(x, y) | (x, y) ∈ D%(x0, y0)} − u(x0, y0) ≥ 0 (≤ 0), thus
approximates an evolution ut ≥ 0 (ut ≤ 0).

The approximation order in (7) isO(%1/2) for positive p but reduces toO(%(p+1)/2) for
negative p.

For p = 2 and p = 1 the proposition yields the same PDEs as [9] except for a time
rescaling which is due to the choice of a Gaussian window in [9].

Under analogous assumptions as in Prop. 1, one can also derive the PDE limit for
the mode filter, where the mode is not obtained by a minimisation in the sense of (4) but
directly as the maximum of the density of values in {u(x, y) | (x, y) ∈ D%(x0, y0)}.

Proposition 2. Let u and x be as in Proposition 1. One step of mode filtering of u with
a disc-shaped window D%(x) approximates for % → 0 a time step of size τ = %2/2 of
an explicit time discretisation of the PDE ut = uξξ−2uηη with ξ, η as in Proposition 1.
At a local minimum (maximum), mode filtering approximates ut ≥ 0 (ut ≤ 0).

The PDE for mode filtering coincides with the one given in [9], again up to time
rescaling. We see, however, that (7) for p → 0 does not yield the PDE from Proposi-
tion 2 but ut = uξξ − uηη . Instead, the mode filtering PDE is obtained for p → −1.
Inserting p = −2 into (7) yields ut = uξξ − 3uηη which was stated as an image sharp-
ening PDE in [7, 16].

Proof (of Prop. 1). Assume w.l.o.g. that the regular location is x0 = 0 = (0, 0) with
u(0, 0) = 0, and that the gradient of u at (0, 0) is in the positive x direction, i.e. ux > 0,
uy = 0. Setting α = ux > 0 and substituting x = %ξ, y = %η, u(x, y) = %αω(ξ, η),
we can use Taylor expansion of ω up to third order to write for (ξ, η) ∈ D1 ≡ D1(0)

ω(ξ, η) = ξ+βξ2%+γξη%+ δη2%+ε0ξ
3%2+ε1ξ

2η%2+ε2ξη
2%2+ε3η

3%3+O(%3) .
(8)

The sought M-smoother value µ = %2ακ then corresponds to an extremum (minimum
for p > 0, maximum for p < 0) of an integral in the unit disc D1,

E(κ) =

∫∫
D1

|ω − κ%|p dη dξ (9)

For sufficiently small %, this integral can be rewritten as

E(κ) =

∫ 1

−1
W (ξ) |ω(ξ, 0)− κ%|p dξ +O(%3) . (10)
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Herein, W (ξ) essentially consists for each ξ of an integral along the level line of ω
going through (ξ, 0). This integral measures the density of the value ω(ξ, 0) in the
overall distribution of ω values within D1. Describing the level line by a function ξ̃(η)
on [η∗−(ξ), η

∗
+(ξ)] where η∗± correspond to its end points on the boundary of D1, W (ξ)

reads as

W (ξ) =
∂ω

∂ξ
(ξ, 0)V (ξ) , V (ξ) =

∫ η∗+(ξ)

η∗−(ξ)

(
∂ω

∂ξ
(ξ̃(η), η)

)−1
dη . (11)

By straightforward but lengthy calculations one obtains

ξ̃(η) = ξ − (γξ + δη)η%

+
(
(2βξ + γη)(γξ + δη)− ε1ξ2 − ε2ξη − ε3η2

)
η%2 +O(%3) , (12)

η∗± = ±
√

1− ξ2 +
(
γξ2 ± δξ

√
1− ξ2

)
%+

(
χ(ξ)± ψ(ξ)

√
1− ξ2

)
%2 +O(%3)

(13)

where ψ(ξ) = ψ0 + ψ1ξ + ψ2ξ
2 + ψ3ξ

3 and χ(ξ) are polynomials in ξ of order 3 and
4, respectively, the exact coefficients of which are not further needed. Putting things
together, one finds

W (ξ) =
(
(w0,0 + w0,2%

2) + w1%ξ + w2%
2ξ2 + w3%

2ξ3
)√

1− ξ2 +O(%3) (14)

with

w0,0 = 2 , w0,2 =
4

3
βδ +

2

3
γ2 − 2

3
ε2 + 2ψ0 , w1 = 2δ + 2ψ1% ,

w2 = −2γ2 − 4

3
βδ − 2

3
γ2 +

2

3
ε2 + 2ψ2 , w3 = 2ψ3 .

(15)

To evaluate the outer integral (10), its integration interval [−1, 1] is split into four parts

E(κ) =

(∫ −√%
−1

+

∫ ν%

−√%
+

∫ √%
ν%

+

∫ 1

√
%

)
W (ξ) |ω(ξ, 0)− κ%|p dξ +O(%3) (16)

where ω(ν%) = κ%. Herein, the modulus in the integrand can be resolved to±(ω(ξ, 0)−
κ%) in each part. Substituting further ξ to −ξ, −ξ + ν%, ξ − ν%, ξ, respectively, in the
four intervals, all integrals can be reduced up to higher order terms to combinations of
standard integrals

∫
ξq dξ (in the inner two intervals) or

∫
ξq
√

1− ξ2 dξ (in the outer
two intervals) with several q, and by combining all these one arrives at

E(κ) = const(κ) +O
(
%min{(p+5)/2,5/2})

+

(
−−4p(p− 1)

p+ 1
β%2S − 2p

p+ 1
δ%2S

)
κ+

(
2(p+ 2)p

p+ 1
%2S

)
κ2 (17)

where the common constant S is defined by the definite integral

S =

∫ π/2

arcsin
√
%

sinp+2 ϕdϕ . (18)
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The apex of the quadratic function in (17) yields the desired extremum of E, which is
indeed a minimum for p > 0 and a maximum for p < 0:

κ =
p− 1

p+ 1
β +

1

p+ 1
δ +O(%(min{p,0}+1)/2) . (19)

Reverting our initial substitutions yields the claim of the proposition for regular points.
The inequalities for local minima (maxima) are obvious consequences of the fact

that for any % > 0 the mean-p filter value is in the convex hull of values u(x), x ∈
D%(x0). �

Proof (of Prop. 2). With the same substitutions as in the previous proof, the mode of ω
is given by the maximiser of V (ξ). By a slight modification of the calculations of the
previous proof one finds

V (ξ) = 2 (1 + δξ%− 2βξ%)
√
1− ξ2 +O(ξ2%2) . (20)

Equating V ′(ξ) to zero yields ω(ξ) = (δ − 2β)% + O(%2) for the mode. For local
minima (maxima), the same reasoning as in the previous proof applies. �

PDE evolutions. Propositions 1 and 2 state PDEs approximated by the respective M-
smoothers at regular points, and inequalities that are valid at local minima and maxima.
Let us briefly discuss how these results determine uniquely the evolutions of the en-
tire image u (including critical points) approximated by the M-smoothers. To this end,
notice first that in a connected critical region (a closed set in R2 consisting entirely
of critical points, with nonempty interior), the inequalities for minima and maxima to-
gether imply ut = 0.

An isolated critical point or a curve consisting of critical points, in contrast, is under
the influence of the regular points surrounding it, and as long as the sign of the evolution
speed ut at the critical point and the surrounding regular points is of the same sign, the
critical point will by a “sliding regime” be forced to adapt to the evolution speed of its
regular surrounds. (A more detailed analysis will be given in a forthcoming paper.) If,
however, the speed at the critical point is of opposite sign compared to all its surround-
ing regular points, they will coalesce to create a growing plateau which by the above
remarks locks in at ut = 0.

Without a detailed analysis which will be given in a forthcoming paper let us remark
that the delimiter that forces ut to 0 at some extrema never takes effect for p ≥ 1 as
in this case one has ut > 0 (ut < 0) in the surrounding regular points of minima
(maxima). For p < 1 the lock-in at ut = 0 first affects extrema where the Hessian of u
is highly anisotropic (including curves consisting of extrema). As p decreases toward 0,
this behaviour gradually extends to less anisotropic extrema. For p < 0, even isotropic
critical points enter this regime such that now all local extrema develop into plateaus.

3 An L∞-stable Numerical Scheme for the PDE Limit

Our PDE limit (6) creates two major numerical difficulties:
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– It involves the anisotropic expressions uξξ and uηη . To reproduce their qualitative
properties adequately, one has to take care that the discretisation approximates rota-
tionally invariant behaviour well and that it satisfies a discrete maximum–minimum
principle which prevents over- und undershoots.

– For p < 1, the sign in front of the operator uηη becomes negative, which results
in a backward parabolic operator. Such operators are known to be ill-posed. They
require additional stabilisation in the model and the numerics.

These challenges show that great care must be invested in the design of appropriate
numerical algorithms. Thus, let us have a deeper look into our efforts along these lines.

Using uηη = ∆u − uξξ and uξξ = curv(u)|∇u| with the isophote curvature
curv(u) we rewrite (6) in a numerically more convenient form:

ut = (2−p) curv(u)|∇u| + (p−1)∆u . (21)

If p ≥ 1, we apply this equation in all locations, including extrema.
For p < 1, the second term describes backward diffusion, which we stabilise by freezing
its action in extrema where |∇u| vanishes:

ut = (2−p) curv(u)|∇u| + (p−1) sgn(|∇u|)∆u . (22)

In practice, our image domain is finite and of rectangular size. This motivates us to
equip the equations (21) and (22) with reflecting boundary conditions.

Both evolutions are replaced by explicit finite difference schemes on a regular grid
of size h in x- and y-dimension and time step size τ . By ui,j we denote an approxima-
tion of u in pixel (i, j).

If p ≥ 1, we discretise ∆u in (21) with a nine-point stencil that averages an approx-
imation aligned along the x- and y-axis with one aligned along the diagonal directions:

1

2

1

h2

0 1 0

1 −4 1

0 1 0

+
1

2

1

(
√
2h)2

1 0 1

0 −4 0

1 0 1

=
1

4h2

1 2 1

2 −12 2

1 2 1

. (23)

This guarantees that all four principal grid directions are treated equally. Our exper-
iments will also show that in this way, rotation invariance is approximated well.
For p < 1, the term (p−1) sgn(|∇u|)∆u in (22) creates stabilised backward diffusion.
Here we base our finite difference approximation on a minmod discretisation of Osher
and Rudin [19], but average it again with its counterpart along the diagonal directions to
guarantee equal treatment of the four principal grid directions. We denote the forward
differences in x-, y-, and the diagonal directions d = (1, 1) and e = (1,−1) by

uxi,j :=
ui+1,j − ui,j

h
, uyi,j :=

ui,j+1 − ui,j
h

, (24)

udi,j :=
ui+1,j+1 − ui,j√

2h
, uei,j :=

ui+1,j−1 − ui,j√
2h

, (25)
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and abbreviate the minmod function by

M(a, b, c) :=


a if |a| = min{|a|, |b|, |c|} ,
b if |b| = min{|a|, |b|, |c|} ,
c if |c| = min{|a|, |b|, |c|} .

(26)

With these notations we approximate sgn(|∇u|)∆u in pixel (i, j) by

1
2

1
h

(
M(uxi+1,j , u

x
i,j , u

x
i−1,j)−M(uxi,j , u

x
i−1,j , u

x
i−2,j)

+M(uyi,j+1, u
y
i,j , u

y
i,j−1)−M(uyi,j , u

y
i,j−1, u

y
i,j−2)

)
+ 1

2
1√
2h

(
M(udi+1,j+1, u

d
i,j , u

d
i−1,j−1)−M(udi,j , u

d
i−1,j−1, u

d
i−2,j−2)

+M(uei+1,j−1, u
e
i,j , u

e
i−1,j+1)−M(uei,j , u

e
i−1,j+1, u

e
i−2,j+2)

)
. (27)

Let us now discuss our approximation of (2−p) curv(u)|∇u| . The isophote curvature

curv(u) =
u2xuyy − 2uxuyuxy + u2yuxx

(u2x + u2y)
3/2

(28)

can be discretised in a straightforward way with central differences. To avoid a poten-
tial singularity in the denominator, we regularise by adding ε = 10−10 to u2x + u2y .
Moreover, note that the isophote curvature curv(u) describes the inverse radius of the
osculating circle to the level line. Since a discrete image does not have structures that
are smaller than a single pixel, the smallest practically relevant radius is h

2 . Thus, we
impose a curvature limiter that restricts the computed result to the range [− 2

h ,
2
h ].

Depending on the sign of (2−p) curv(u), we may interpret (2−p) curv(u)|∇u|
either as a dilation term (for positive sign) or an erosion term (for negative sign) with
a disc-shaped structuring element of radius |(2−p) curv(u)|; see e.g. [1]. For a stable
discretisation of |∇u|, we use the Rouy-Tourin upwind scheme [20]. In the dilation
case, this comes down to

|∇u|i,j ≈
√(

max
(
−uxi−1,j , uxi,j , 0

))2
+
(
max

(
−uyi,j−1, u

y
i,j , 0

))2
, (29)

and in the erosion case to

|∇u|i,j ≈
√(

max
(
−uxi,j , uxi−1,j , 0

))2
+
(
max

(
−uyi,j , u

y
i,j−1, 0

))2
. (30)

Consistency. Since our resulting explicit scheme uses various one-sided – and thus first
order – finite difference approximations within its upwind and minmod strategies, if
follows that its general consistency order outside extrema is O(h+ τ). For the case
p = 2, however, the second order stencil (23) gives O(h2+τ).

Stability. All components of our explicit scheme are specifically selected to create a
nonnegative appoximation for an admissible time step size. This allows us to prove its
L∞ stability and a discrete maximum–minimum principle. Since the details are some-
what cumbersome and do not give more general insights, we sketch only the basic ideas
by briefly analysing the contributions of the individual terms.
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Let uk+1 = (I + τA)uk be the matrix-vector notation of the explicit scheme for
the diffusion evolution ut = ∆u. Here the vector uk contains the values of u in all
pixels at time kτ , I is the unit matrix, and the matrix A represents the discretisation
of ∆u with the stencil (23) and reflecting boundary conditions that are implemented
by mirroring. Then all entries of the iteration matrix I + τA are nonnegative, if 1 −
12τ
4h2 ≥ 0. This leads to the stability condition τ ≤ h2

3 for the forward diffusion process.
Following the arguments in [19], the same stability limit can also be derived for an
explicit scheme for the stabilised backward diffusion process ut = −sgn(|∇u|)∆u
that involves the minmod discretisation (27).
The explicit Rouy-Tourin scheme for the dilation/erosion evolutions ut = ±|∇u| can
be shown to be L∞-stable for τ ≤ h

2

√
2.

By combining all these restrictions in a worst case scenario, it follows that our explicit
scheme for the full evolution equation (21) or (22) must satisfy the stability condition

τ ≤ h2

2
√
2 |2−p|+ 3 |p−1|

. (31)

It guarantees L∞ stability and a discrete maximum–minimum principle. In practice this
restriction is not very severe: With h := 1, it comes down to τ ≤ 1

3 for the diffusion
evolution (p = 2), to τ ≤ 1

4

√
2 ≈ 0.354 for mean curvature motion (p = 1), and to

τ ≤ 0.069 for the mode equation (p = −1). Thus, we can compute the PDE evolutions
for M-smoothers not only in a stable way, but also fairly efficiently.

4 Experiments

In our experiments, we evaluate the PDE (6) with five different settings for p: a tempo-
rally rescaled midrange evolution (p → ∞) using ut = uηη with τ = 0.1, the mean
evolution leading to homogeneous diffusion (p = 2, τ = 0.25), the median evolution
yielding mean curvature motion (p = 1, τ = 0.25), the mode evolution (p = −1,
τ = 0.05), and the Gabor flow (p = −2, τ = 0.04).

Fig. 1 illustrates the effect of these equations on the real-world test image trui. The
CPU times for computing each of these results on a contemporary laptop are in the or-
der of half a second. We observe that the midrange filter produces fairly jagged results,
although it has a clear smoothing effect. Homogeneous diffusion does not suffer from
jagged artifacts, but blurs also important structures such as edges. The median evolu-
tion smoothes only along isolines which results in a smaller deterioration of edge-like
structures. The mode and the Gabor evolutions are very similar and may even enhance
edges due to their backward parabolic term −uηη .

Fig. 2 allows to judge if our numerical algorithm is capable of reproducing the ro-
tationally invariant behaviour of its underlying PDE (6). We observe excellent rotation
invariance. Moreover, we see that the mode and Gabor evolutions have comparable
shrinkage properties as mean curvature motion. However, they differ from mean curva-
ture motion by their backward term −uηη , which can compensate dissipative artifacts
that are caused by the discretisations of the forward parabolic term.
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original (256× 256) midrange (t = 8) mean (t = 5)

median (t = 5) mode (t = 3) Gabor (t = 2)

Fig. 1. Smoothing effect of the different evolution equations on the test image trui.

original midrange mean median mode Gabor
256× 256 t = 100 t = 100 t = 1300 t = 400 t = 300

Fig. 2. Effect of the different evolution equations on a rotationally invariant test image.

In Fig. 3, we study the shape simplification properties of the mode evolution: It
shrinks the binary shape of the kiwi in such a way that highly curved structures evolve
faster than less curved ones, resulting in an evolution where nonconvex shapes become
convex and vanish in finite time by shrinking to a circular point. Thus, the mode evolu-
tion appears to enjoy the same shape simplification qualities as mean curvature motion.
However, that fact that it does not suffer from dissipative artifacts constitutes a distinc-
tive advantage and makes it attractive for many shape analysis problems. Last but not
least, Fig. 3 shows that the bird existed long before the egg, giving the ultimative answer
to a deep problem in philosophy.

5 Summary and Conclusions

We have established a comprehensive analysis that identifies the PDE limit for the full
class of iterated M-smoothers with order-p means. It does not only reproduce known
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original t = 50 t = 500 t = 2500 t = 4200 t = 6000

Fig. 3. Shape simplification properties of the mode evolution. Image size: 579 × 449. Source of
original image: https://commons.wikimedia.org/wiki/File:Kiwi silhouette-by-flomar.svg.

results for mean and median filtering, but also corrects a common misconception in the
literature: We have shown the surprising fact that in the continuous limit, mode filtering
does not correspond to p = 0, but results from the limit p → −1. Moreover, our filter
class ut = uξξ+(p−1)uηη can also be extended to models that have no interpretation
within the setting of M-smoothers, e.g. Gabor’s classical method for p = −2.

Since literal implementations of some M-smoothers such as mode filtering can be
highly nontrivial when using small local histograms [10, 14], we have proposed a novel
numerical algorithm that can handle the PDE evolution for arbitrary p-values. Although
these evolutions can be highly anisotropic and may even exhibit backward parabolic
behaviour, we managed to come up with an L∞-stable finite difference scheme that is
fairly efficient, satisfies a maximum–minimum principle and shows very good rotation
invariance. This has been partly achieved by employing and adapting powerful stabil-
isation concepts from the numerics of hyperbolic PDEs, such as upwinding, minmod
functions, and curvature limiters. Our numerical algorithm is applicable to any stable
evolution of type ut = a uξξ + b uηη , where a and b may have arbitrary sign. Thus, it
is of very general nature and covers also numerous applications beyond M-smoothing,
including image interpolation [4], adaptive filter design [3], and many level set methods
[18]. Exploring some of these applications is part of our ongoing work.

Our experiments indicate that the PDEs for p < 1, such as the mode evolution,
are particularly appealing: They combine strong shape simplification properties with
excellent sharpening qualities. They clearly deserve more research.

Connecting the class of M-smoothers to the family of PDE-based methods con-
tributes one more mosaic stone to the mathematical foundations of image analysis.
Since M-smoothers themselves are related to many other approaches [17, 23, 24], in-
cluding W-smoothers, bilateral filters, mean-shift and robust estimation, our results can
help to gain a broader and more coherent view on the entire field.

Acknowledgement. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 741215, ERC Advanced Grant INCOVID).

References

1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in
image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)

2. Barral Souto, J.: El modo y otras medias, casos particulares de una misma expresión
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