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Abstract. Nonlinear diffusion of images, both isotropic and anisotropic, has be-
come a well-established and well-understood denoising tool during the last three
decades. Moreover, it is a component of partial differential equation methods for
various further tasks in image analysis. For the analysis of such methods, their un-
derstanding as gradient descents of energy functionals often plays an important
role. Often the diffusivity or diffusion tensor field for nonlinear diffusion is com-
puted from pre-smoothed image gradients. What was not clear so far was whether
nonlinear diffusion with this pre-smoothing step still is the gradient descent for
some energy functional. This question is answered to the negative in the present
paper. Triggered by this result, possible modifications of the pre-smoothing step
to retain the gradient descent property of diffusion are discussed.

1 Introduction

Nonlinear diffusion processes are well-established image denoising methods. They also
form indispensable building blocks in numerous image analysis methods involving par-
tial differential equations (PDEs).

The starting point for the modern development of nonlinear diffusion methods in
image processing was Perona and Malik’s paper [13]. It proposes the isotropic nonlinear
diffusion model which is nowadays mostly stated as

ut = div
(
g(|∇u|2)∇u

)
, (1)

with g : R+
0 → R+

0 being a decreasing diffusivity function. From the two candidates
for g proposed in [13], the function

g(s2) =
1

1 + s2/λ2
(2)

prevails as a widespread standard choice. The parameter λ > 0 can be interpreted
intuitively as a threshold. It separates small gradients |∇u| < λ that are smoothed out
as noise from large ones |∇u| > λ presumed to represent valuable image structures
that should be preserved.

Other diffusivities have been proposed, with total variation diffusion [1, 2, 6] being
the most prominent example besides (2).
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In semidiscrete (space-discrete, time-continuous) and fully discrete settings well-
posedness of nonlinear isotropic diffusion processes has been proved, see [4, 3, 15].

In the fully continuous setting, Perona-Malik diffusion in its original form is not
generally well-posed. Solutions of its initial-boundary value problem in different func-
tion spaces have been investigated [8, 7, 9, 10, 23] with mixed results: Although classi-
cal solutions exist in certain conditions, either locally or even globally, this is not gen-
erally the case. Weak solutions can be highly non-unique. Stability results are largely
limited to extremum principles (L∞-stability).

A pivotal role in the stability issues of Perona-Malik diffusion is played by the stair-
casing phenomenon, by which even smooth initial data develop discontinuities within
finite time. This is essentially caused by the local appearance of inverse diffusion in
regions with large gradients where the flux g(|∇u|2)|∇u| decreases with |∇u|. With
the diffusivity (2), for example, this is the case for |∇u| > λ, compare [15].

Regularised nonlinear diffusion. An explanation for the discrepancy between the
space-continuous and discrete behaviour of Perona-Malik diffusion is given in [17]
where it is pointed out that discretisation by itself introduces a regularising effect. How-
ever, relying on regularisation by discretisation means that important features of the ac-
tual image enhancement process are not part of the space-continuous model. Therefore
it is desirable to have an explicit regularisation already in the space-continuous model.

Indeed, explicit regularisations in the continuous setting have been proposed as
early as 1992 in [5, 11]. The pre-smoothing by Gaussian smoothing of the gradient
within the diffusivity expression as introduced by [5] enjoys most popularity till today,

ut = div
(
g(|Gσ ∗∇u|2)∇u

)
. (3)

Well-posedness of (3) has been proven in [5].
Introducing an additional directional dependency of the diffusivity, one arrives at

anisotropic diffusion processes. One such process, edge-enhancing anisotropic diffu-
sion (EED), can be stated as [14, 15]

ut = div
(
g(J(u))∇u

)
. (4)

Herein, the decreasing diffusivity function g acts on the rank-one symmetric outer-
product matrices

J(u) = (Gσ ∗∇u)(Gσ ∗∇u)T (5)

to yield at each image location a diffusion tensor g(J). The diffusion tensor possesses
one eigenvalue g(|Gσ∗∇u|2) with an eigenvector parallel to the pre-smoothed gradient
Gσ ∗∇u, and one eigenvalue g(0) = 1 for an eigenvector orthogonal to the gradient.
Like isotropic nonlinear diffusion, EED is capable of preserving and even enhancing
sharp edges because it suppresses, or even reverts, diffusion across edges; in contrast
to its isotropic predecessor, however, it allows for undiminished diffusion flow along
edges, thus achieving better denoising near edges.

It is worth noting that for grey-value images, the pre-smoothing of the gradient
is essential for true anisotropy because the application of g to the rank-one matrices
∇u∇uT would yield just the exact same flux field as Perona-Malik diffusion, and
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thereby effectively reproduce isotropic diffusion. For multi-channel (e.g., colour) im-
ages, anisotropy can arise even without pre-smoothing if the gradient directions of the
colour channels do not coincide.
Diffusion as gradient descent. PDE-based methods in image processing, be it for
denoising or for other purposes, are often derived from variational approaches, where
an image processing task is formulated as the minimisation of some energy functional
dependent on the sought image. Variational calculus then allows to derive PDEs either
as Euler-Lagrange equations or as gradient descent of the functional. Indeed, the energy
functional

E[u] =
1

2

∫
Ω

Ψ
(
|∇u|2

)
dx (6)

immediately leads to the gradient descent

ut = div
(
Ψ ′(|∇u|2)∇u

)
, (7)

which is exactly the original Perona-Malik equation without pre-smoothing, with dif-
fusivity g ≡ Ψ ′; compare [12]. For example, the diffusivity (2) arises from Ψ(s2) =
λ2 ln(1+ s2/λ2). More general variational models often contain summands of the type
(6) which then yield diffusion components in their gradient descent equations.

Similarly, the EED equation without pre-smoothing in the case of multi-channel
images can be obtained as gradient descent of an energy functional in which a penalty
Ψ as before is applied to the sum of outer products ∇uc∇uTc of the colour channels uc.

For PDEs arising from gradient descent, it can be attractive to design finite-difference
discretisations in a way that they preserve this connection. To this end, the energy func-
tional is discretised, which yields a function of a large finite number of real variables
(one per pixel). Gradient descent for this function takes the form of a system of ordinary
differential equations which is a discretisation of the PDE, see [19] for an example.

Derivation as a gradient descent from an energy functional can serve as a strong
theoretical justification that singles out a particular PDE evolution from similar ones
by an optimality criterion. The analysis of energy functionals often provides powerful
tools to derive important properties of the models such as convergence to a unique
steady state (e.g. for convex energy functionals).

Thus, the gradient descent property makes a strong case for the original Perona-
Malik diffusion (1). In practice, however, it is very often the pre-smoothed version (3)
which is used for denoising, or as building block within some other PDE-based image
processing method. This raises naturally the question whether (3) and similar diffusion
processes are gradient descents for suitable energy functionals, too.

Whereas researchers in the field have pondered about this question time and again,
it seems that it has attracted little real effort over the years. Researchers noted that there
is no known energy functional yielding this evolution as gradient descent but could
not agree whether this would be principally impossible, or whether they had not been
inventive enough to write down the proper energy functional, or whether maybe such
an energy functional existed but would not admit being stated in a closed form. For
example, [19, p. 199, footnote 3] states that “For σ 6= 0, no energy functional is known
that has [isotropic nonlinear diffusion with pre-smoothing] as gradient descent.”
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However, given the theoretical advantages of PDE methods being derived from vari-
ational models, we believe that this question is worth settling, and will do so in this
paper. Unfortunately, the answer is negative. We will therefore add some – explorative
– discussion of alternatives.
Structure of the paper. In Section 2, we prove that neither 1D nonlinear diffusion, nor,
as a consequence, 2D isotropic nonlinear diffusion, nor EED can be stated as gradient
descents. In Section 3, we discuss how to design regularised diffusion processes that are
exact gradient descents. Experimental demonstration of one such process in compari-
son to Perona-Malik diffusion is provided in Section 4. A short summary in Section 5
concludes the paper.

2 Integrability Analysis of Diffusion with Pre-Smoothing

In order to investigate whether diffusion with pre-smoothing can be stated as a gradient
descent, let us recall first the situation in classical vector field analysis.
Classical integrability conditions. Consider a continuously differentiable vector field
v : Rd → Rd, where v(x) = (v1(x1, . . . , xd), . . . , vd(x1, . . . , xd))

T. A necessary
criterion for v to be the gradient field of a potential V is then given by the integrability
condition

∂vi
∂xj

=
∂vj
∂xi

for all i, j = 1, . . . , d, i 6= j. (8)

In particular, for d = 2 or d = 3 this boils down to the well-known condition rotv = 0
where rotv = ∇ ∧ v = ∂1v2 − ∂2v1 (scalar-valued) in two, and rotv = ∇ × v
(vector-valued) in three dimensions.
Coordinate-free integrability conditions. Whereas it is usually assumed in (8) that
coordinates xi, vi are taken w.r.t. some orthonormal basis, it is obvious that this is
not necessary: Note that (8) is trivially fulfilled also for i = j. Thus it can easily be
extended to linear combinations (with y = (y1, . . . , yd)

T and z = (z1, . . . , zd)
T being

unit vectors), yielding

d∑
i=1

d∑
j=1

αiβj
∂vi
∂xj

=

d∑
i=1

d∑
j=1

βjαi
∂vj
∂xi

(9)

which by 〈v,y〉 =
∑d
i=1 yivi, ∂/∂z =

∑d
j=1 zj ∂/∂xj means that the set of integra-

bility conditions can be re-stated as

∂〈v,y〉
∂z

=
∂〈v, z〉
∂y

(10)

for arbitrary unit vectors y, z, i.e. the component of v in direction of y has a directional
derivative in direction of z equal to that of the z component in y direction. The virtue
of (10) is that it is coordinate-free, i.e. it does not depend on any choice of orthonormal
basis.

Moreover, each integrability condition does in fact involve only the projection of
v onto a two-dimensional subspace. This is natural since the restriction and projection
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of a gradient descent to a subspace is again a gradient descent in that subspace. This
argument does obviously hold not only in finite, but also in infinite dimensions, which
means that the set of necessary conditions (10) remains valid even if v : V → V with
any Hilbert space V .

Transfer to function spaces. Assume that V = V(Ω) is a Hilbert space of sufficiently
smooth functions over some domain Ω. We consider a time-dependent partial differen-
tial equation

ut = F [u] , F [u](x) = f
(
u(x), ∂α1

u(x), ∂α2
u(x), . . .

)
(11)

where ∂αiu are partial derivatives of u w.r.t. spatial coordinates in Ω, and f some suf-
ficiently smooth function combining these. The flux F [u] defined by f can then be
considered as a mapping from the space V of functions to the space of perturbations of
functions in V , which can be identified with V . Thus, F is a vector field on V .

If (11) is to be the gradient descent of some functional E[u] over V , F needs to be
the gradient field of E[u]. Translating the integrability conditions (10) to this situation,
we obtain as the set of necessary conditions

∂〈ut, v〉
∂〈u,w〉

=
∂〈ut, w〉
∂〈u, v〉

(12)

where v, w ∈ V are arbitrary perturbation functions. Using ∂( · )/∂〈u, v〉 = d
dε ( · )|ε=0,

this set of conditions can be translated further into

d

dε
〈F [u+ εv], w〉

∣∣∣∣
ε=0

=
d

dε
〈F [u+ εw], v〉

∣∣∣∣
ε=0

(13)

for arbitrary perturbation functions v, w.

Analysis of pre-smoothed nonlinear diffusion in 1D. We turn now to apply (13) to
analyse the 1D nonlinear diffusion process with pre-smoothing given by

ut = ∂x
(
g((Gσ ∗ ux)2)ux

)
. (14)

Let us assume that u and its perturbation functions come from a suitable Hilbert space
of functions over a domain Ω ⊆ R with the standard scalar product

〈u, v〉 =
∫
Ω

u(x)v(x) dx . (15)

(Note that if Ω is not the entire R, the boundary treatment for the convolution must be
specified appropriately.) Assume further that the perturbation functions v and w vanish
on the boundary of Ω if any (this technical condition could be relaxed but it simplifies
the expressions arising from integration by parts later on). Setting for abbreviation ũ :=
Gσ ∗ u, we can calculate

F [u] = ∂x
(
g(ũ2x)ux

)
= g′(ũ2x) 2 ũx ũxx ux + g(ũ2x)uxx (16)



6 M. Welk

and thus

d

dε
〈F [u+ εv], w〉

∣∣∣∣
ε=0

=

∫
Ω

d

dε

(
2 g′((ũx + εṽx)

2) (ũx + εṽx) (ũxx + εṽxx)·

(ux + εvx) + g((ũx + εṽx)
2)(uxx + εvxx)

)∣∣∣
ε=0

w dx

=

∫
Ω

(
2 g′′(ũ2x) · 2 ũx ṽx ũx ũxx ux + 2 g′(ũ2x) ṽx ũxx ux

+ 2 g′(ũ2x) ũx ṽxx ux + 2 g′(ũ2x) ũx ũxx vx

+ g′(ũ2x) · 2 ũx ṽx uxx + g(ũ2x) vxx

)
w dx

=

∫
Ω

4 g′′(ũ2x) ũ
2
x ux ũxx ṽx w + 2 g′(ũ2x)ux ũxx ṽx w

+ 2 g′(ũ2x) ũx ux ṽxx w + 2 g′(ũ2x) ũx ũxx vx w

+ 2 g′(ũ2x) ũx uxx ṽx w + g(ũ2x) vxx w dx (17)

Using integration by parts for the summands involving second derivatives of perturba-
tion functions, most summands cancel, leaving

d

dε
〈F [u+ εv], w〉

∣∣∣∣
ε=0

=

∫
Ω

−g(ũ2x) vx wx − 2 g′(ũ2x)ũx ux ṽx wx dx . (18)

We combine this expression with its counterpart for d
dε 〈F [u+ εv], w〉

∣∣
ε=0

to obtain,
with cancellation of g(ũ2x) vx wx,

d

dε
〈F [u+ εv], w〉

∣∣∣∣
ε=0

− d

dε
〈F [u+ εv], w〉

∣∣∣∣
ε=0

= 2

∫
Ω

g′(ũ2x)ũx ux (vx w̃x − ṽx wx) dx . (19)

Unfortunately, this expression does not vanish identically for non-constant diffusivity g
and arbitrary functions u, v, w. We have therefore proven the following statement.

Proposition 1. The regularised nonlinear 1D diffusion process (14) with a non-constant,
twice continuously differentiable diffusivity function g is not the gradient descent for
any energy functional on functions u : Ω → R, Ω ⊆ R, w.r.t. the standard metric in
function space induced by the scalar product (15).

Implications for 2D diffusion processes. We turn now to consider the nonlinear
isotropic diffusion process from [13] with pre-smoothing [5] in 2D (or higher dimen-
sion) as given in (3).

We assume that the domain Ω ⊆ Rd is of the form Ω = Ω1 × Ω2 where Ω1 ⊆ R
and Ω2 ⊆ Rd−1; this is obviously the case e.g. for rectangular images. We assume
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further that the scalar product of functions on Ω (and thus the Hilbert function space
V(Ω)) is chosen in such a way that the functions that are constant along all but the first
coordinate direction and are given by u(x1, x2, . . . , xd) = u1(x1) with u1 ∈ V(Ω1)
belong to V(Ω). This can be ensured, e.g., by taking Ω2 as an interval or Cartesian
product of intervals with periodic boundary conditions, or by equipping Ω2 = Rd−1
with a weighted scalar product in which the local weights decay quickly enough to
ensure finiteness of 〈1, 1〉, e.g.

〈u, v〉 =
∫
Ω2

Gσ(x)u(x)v(x) dx . (20)

By restriction to functions as described above that depend on the first coordinate
only, the process (3) reduces verbatim to (14). As Proposition 1 shows, it cannot be
represented as gradient descent in this particular case, and therefore neither in general.
Using a suitable limit argument where necessary, the result can be transferred to the
function space V(Ω) with standard scalar product as stated in the following corollary.

Corollary 1. The regularised nonlinear isotropic diffusion process (3) with a non-
constant, twice continuously differentiable diffusivity function g is not the gradient de-
scent for any energy functional on functions u : Ω → R, Ω ⊆ Rd, w.r.t. the standard
metric in function space.

Similar arguments apply to EED, yielding the following statement.

Corollary 2. The regularised nonlinear anisotropic diffusion process (4) with a non-
constant, twice continuously differentiable diffusivity function g is not the gradient de-
scent for any energy functional on functions u : Ω → R, Ω ⊆ Rd, w.r.t. the standard
metric in function space.

3 Alternatives

In this section we discuss possible alternatives to the established pre-smoothing in dif-
fusion methods which could be compatible with the gradient descent framework that
exists for nonlinear diffusion without pre-smoothing, given that this framework often
also inspires applications of the pre-smoothed variants.

We remark first that using the traditional pre-smoothed Perona-Malik diffusion (3)
for edge-enhancing denoising, the smoothing of the gradient has a two-fold role. On one
hand, it yields an overall smoother diffusivity field, thus supporting edge enhancement
in creating a more regular set of edges. On the other hand, it boosts the removal of
small-scale structures such as single noise pixels which would otherwise be stabilised
longer by their surrounding high gradients and thus low diffusivities.

We also notice that “regularisation by discretisation”, as undesirable an intertwining
of model and numerics it involves, has the advantage to retain the gradient descent
property if an appropriate discretisation is used. However, it does not provide a means
to steer the degree of regularisation.
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Modified energy functional. In order to find diffusion equations with adjustable reg-
ularisation parameters that are consistent with gradient descent in the space-continuous
setting, we consider modifications of the energy functional (6).

In coherence-enhancing anisotropic diffusion (CED) [16], another anisotropic dif-
fusion process introduced by Weickert that is designed to denoise and enhance line-like
structures rather than providing general-purpose denoising such as EED, a smoothed
structure tensor is used that involves, besides the smoothing of the gradients ∇u, a
second Gaussian convolution that applies to the outer product matrices, leading to

J%(u) = G% ∗
(
(Gσ ∗∇u)(Gσ ∗∇u)T

)
. (21)

Moreover, following [18], the energy functional (6) can be rewritten as

E[u] =
1

2

∫
Ω

Ψ
(
trace(∇u∇uT)

)
dx . (22)

Inspired by this observation, we consider smoothing of |∇u|2 = trace(∇u∇uT). Gen-
eralising Gaussian convolutions to linear operators L1, L2, we write down the ansatz

E[u] =
1

2

∫
Ω

Ψ
(
L1(|L2(∇u)|2)

)
dx . (23)

For the following, we denote by L∗ the adjoint operator of a linear operator L, i.e. the
linear operator that satisfies∫

Ω

L∗(f) · g dx =

∫
Ω

f · L(g) dx (24)

for all f , g. Gaussian convolution on Rn is self-adjoint, i.e. (Gσ∗)∗ = Gσ∗.
Gradient descent. To determine the gradient descent of (26), we calculate, for some
perturbation function v that vanishes on the boundary of Ω,

d

dε
E[u+ εv]

∣∣∣∣
ε=0

=

∫
Ω

Ψ ′
(
L1(|L2(∇u)|2)

)
· L1

(
〈L2(∇u), L2(∇v)〉

)
dx

=

∫
Ω

L∗1

(
Ψ ′
(
L1(|L2(∇u)|2)

))
· 〈L2(∇u), L2(∇v〉dx

=

∫
Ω

〈
L∗2

(
L∗1

(
Ψ ′
(
L1(|L2(∇u)|2)

))
· L2(∇u)

)
,∇v

〉
dx

= −
∫
Ω

div

(
L∗2

(
L∗1

(
Ψ ′
(
L1(|L2(∇u)|2)

))
· L2(∇u)

))
· v dx (25)

from which we read off the desired gradient descent as

ut = div

(
L∗2

(
L∗1

(
Ψ ′
(
L1(|L2(∇u)|2)

))
· L2(∇u)

))
. (26)
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Note that in this diffusion-like process the flux is the smoothed version of a vector
field which is at each location a scalar multiple of L2(∇u). If L2 is not the identical
operator id, the flux direction can, and will at most locations with non-trivial structure,
deviate from that of ∇u. Thus, (26) is an anisotropic process. However, there is an
important difference to established anisotropic diffusion processes like EED or CED:
In these, the flux is always the product of a positive semidefinite diffusion tensor with
∇u. Therefore, the projection of the flux onto the gradient direction always points in
positive gradient direction, ensuring a forward diffusion component in that direction. In
contrast, the flux in (26) can even have a negative projection onto ∇u, thus performing
inverse diffusion with negative diffusivity. Inverse diffusion is a prototype of an unstable
evolution. Although diffusion processes that involve local inverse diffusion can still be
stable for entire images, compare [20, 22], it is not obvious whether this is true here.
To decide this requires a more detailed stability analysis which is beyond the scope of
this paper. At any rate, to devise stable numerical schemes for such a process would be
challenging [20–22]. The gradient descent (26) with L2 6= id does therefore not lend
itself as a promising candidate to replace (3).

With L2 ≡ id, instead, (26) simplifies into

ut = div

(
L∗1

(
Ψ ′
(
L1(|∇u|2)

))
·∇u

)
. (27)

Specifically for L1 being Gaussian convolution, we have

ut = div
((
Gσ ∗ Ψ ′(Gσ ∗ |∇u|2)

)
∇u
)
. (28)

We will demonstrate the effect of the evolution (28) compared with traditional Perona-
Malik diffusion with pre-smoothing (3) by an experiment in the next section. Before
we do so, let us shortly discuss what effect can be expected from the modified pre-
smoothing in (28). Unlike in (3), where pre-smoothing amounted to a local averaging
of (oriented) gradient directions, the Gaussian convolution in (28) locally averages the
(non-oriented) gradient flow-line directions (or, equivalently, level line directions).

Regarding the twofold effect of traditional pre-smoothing discussed at the begin of
this section, this means that the first effect, creating a more regular set of edges, will
still happen in a similar way. The second effect, fast removal of small-scale structures,
cannot be expected to the same extent because opposing gradients do no longer cancel,
thus leaving a higher average gradient magnitude to be estimated around small-scale
structures.

4 Experiments

We use a test image with substantial additive Gaussian noise, Fig. 1a, to compare the
gradient-descent-based regularised isotropic nonlinear diffusion (28) with traditional
pre-smoothed Perona-Malik diffusion (3). Both PDEs are discretised by essentially
the same explicit Euler forward scheme with central spatial differences, see e.g. [22,
eq. (10)]. In all experiments, we use the diffusivity (2) with the same threshold, and the
same standard deviation for pre-smoothing by Gaussian convolution.
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a

b c

d e

f g h

i

Fig. 1. Comparison of regularised isotropic nonlinear diffusion evolutions. In all experiments, an
explicit forward scheme with central spatial differences and time step size τ = 0.25 was em-
ployed, and the diffusivity function was fixed to (2) with λ = 1. All Gaussian convolutions used
σ = 2. Top left, a Test image Cameraman (256 × 256 pixels) with Gaussian noise of standard
deviation 40. – Middle horizontal strip (reference): Pre-smoothed Perona-Malik diffusion (3).
b diffusion time T = 125. – c T = 500. – Top right strip: Unstable evolution (29). d Diffusion
time T = 125 (same as b). – e T = 1000. – Lower strip: Evolution (28). f Diffusion time
T = 125 (same as b). – g T = 500 (same as c). – h T = 1000 (visual effect comparable to c). –
i T = 10000.

To start with, Fig. 1b, c show the result of (3). As expected, noise is removed quickly,
and progressive simplification of image structures, and smoothing of edges takes place.

The next two frames, Fig. 1d, e show a failed evolution: In order to give an indication
of the difficulties arising from anisotropy with inverse diffusion that occur in (26) with
non-trivial L2, we show this process with L2 being Gaussian convolution, and L1 ≡ id,
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i.e.
ut = div

(
Gσ ∗

(
Ψ ′(|Gσ ∗∇u|2)(Gσ ∗∇u)

))
. (29)

Using the same evolution times as in b, one observes small-scale oscillatory artifacts
or ripples, Fig. 1d, that persist even at an evolution time when many meaningful image
structures have already been removed, see frame e. Although it remains open whether
this process can be stabilised by more advanced numerics, the experiment supports that
(29) is not a convincing replacement for (3).

The remaining frames, Fig. 1f–i, demonstrate the evolution (28). Frames f and g
show the same evolution times as b and c. As expected, small-scale noise takes longer to
be removed but is eventually eliminated. In frame g, still many more small-scale details
are preserved than in c although the larger-scale smoothing effect is not that much
behind that in c. With doubling the evolution time, frame h, the overall image smoothing
is visually comparable to that in c, but still with a stronger tendency to preserve small
features. In the long run, of course, (28) converges to a flat homogeneous image, as the
final frame Fig. 1i illustrates.

5 Summary

In this paper we have closed a long-standing – minor, but, in our opinion, relevant –
gap in the theoretical framework of diffusion methods in image processing. We have
proven that nonlinear isotropic and anisotropic diffusion with the commonly used pre-
smoothing of image gradients is not the gradient descent of any energy functional, de-
spite the fact that applications of these components in image processing applications
are often justified with energy minimisation arguments.

This result raised the question whether the concepts of diffusion as a gradient de-
scent, and pre-smoothing as an important ingredient for stability in diffusion methods
can be reconciliated. By analysing a generalised ansatz for an energy functional with
pre-smoothing, we could single out pre-smoothing of the squared gradients as a can-
didate regularisation procedure for nonlinear diffusion that retains the gradient descent
property.
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